Industrial-Sized Deals TextBTS15 Shop Women's Handbags Learn more nav_sap_plcc_6M_fly_beacon $5 Albums $5 Off Fire TV Stick Off to College Essentials pivdl pivdl pivdl  Amazon Echo Starting at $99 Kindle Voyage Nintendo Digital Games Shop Back to School with Amazon Back to School with Amazon Outdoor Recreation STEM Toys & Games
REf Dictionaries Atlas Language Guides Writing Guides Learn more
Have one to sell? Sell on Amazon
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See this image

Dictionary on Lie Algebras and Superalgebras Hardcover – June 28, 2000

ISBN-13: 978-0122653407 ISBN-10: 0122653408

1 New from $918.80 3 Used from $399.00
Amazon Price New from Used from
Hardcover
"Please retry"
$918.80 $399.00
Unknown Binding
"Please retry"
Free%20Two-Day%20Shipping%20for%20College%20Students%20with%20Amazon%20Student


InterDesign Brand Store Awareness Textbooks

Editorial Reviews

From the Back Cover

Dictionary on Lie Algebras and Superalgebraspresents a detailed description of the structure of Lie algebras and Lie superalgebras and an extensive study of their finite dimensional representation theory. Priority has been given to clarity. TheDictionaryextensively covers finite dimensional algebras and superalgebras, which moreover are indispensable to the study of more elaborate structures, such as infinite dimensional algebras or quantum groups. TheDictionarywill serve as the reference of choice for practitioners and students alike.


Key Features:

* Compiles and presents material currently scattered throughout numerous textbooks and specialist journal articles
* Dictionary format provides an easy to use reference on the essential topics concerning Lie algebras and Lie superalgebras
* Covers the structure of Lie algebras and Lie superalgebras and their finite dimensional representation theory
* Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras

TheDictionaryis aimed at theoretical physicists who use continuous symmetries, particularly elementary particle physicists, from the phenomenologist to the mathematical physicist. The beginner will be able to discover the main concepts of algebras and superalgebras. Experienced theorists will find the necessary tools and information for specific applications. It is also appropriate supplementary reading for postgraduate courses: including Symmetries in Physics, Advanced Quantum Mechanics, Elementary Particle Physics, Nuclear Physics, Field Theory, Statistical Mechanics and Quantum Optics.

About the Author

Luc Frappat is an Assistant Professor at the University of Savoie, France, and carries research activities in the Laboratory of Theoretical Physics in Annecy-le-Vieux (LAPTH). His area of research is in mathematical physics, and concerns superalgebras, W algebras and quantum groups, as well as applications in biophysics.

Antonino Sciarrino is a Professor of theoretical physics at the University of Napoli "Federico II," Italy. He has carried research activities in algebraic approaches to quantum physics, particularly in high-energy scattering and grand unification models. His present scientific interests are in field theory and biophysics.

Paul Sorba is the Director of Research at the CNRS, France, and head of the LAPTH. His research interests are in elementary particle physics and mathematical physics. He has delivered numerous courses and lectures on symmetries and their applications for graduate students in France and other European countries.

NO_CONTENT_IN_FEATURE

Best Books of the Month
Best Books of the Month
Want to know our Editors' picks for the best books of the month? Browse Best Books of the Month, featuring our favorite new books in more than a dozen categories.

Product Details


More About the Author

Discover books, learn about writers, read author blogs, and more.

Customer Reviews

There are no customer reviews yet.
5 star
4 star
3 star
2 star
1 star
Share your thoughts with other customers
Want to discover more products? Check out this page to see more: algebra dictionary