Euler's Gem and over one million other books are available for Amazon Kindle. Learn more
Buy New
$24.90
Qty:1
  • List Price: $27.95
  • Save: $3.05 (11%)
FREE Shipping on orders over $35.
Only 7 left in stock (more on the way).
Ships from and sold by Amazon.com.
Gift-wrap available.
Add to Cart
Have one to sell? Sell on Amazon
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See this image

Euler's Gem: The Polyhedron Formula and the Birth of Topology Hardcover – September 28, 2008


See all 4 formats and editions Hide other formats and editions
Amazon Price New from Used from
Kindle
"Please retry"
Hardcover
"Please retry"
$24.90
$6.00 $6.48


Frequently Bought Together

Euler's Gem: The Polyhedron Formula and the Birth of Topology + Concepts of Modern Mathematics (Dover Books on Mathematics)
Price for both: $36.60

Buy the selected items together

Customers Who Bought This Item Also Bought

NO_CONTENT_IN_FEATURE

Image
Looking for the Audiobook Edition?
Tell us that you'd like this title to be produced as an audiobook, and we'll alert our colleagues at Audible.com. If you are the author or rights holder, let Audible help you produce the audiobook: Learn more at ACX.com.

Product Details

  • Hardcover: 336 pages
  • Publisher: Princeton University Press; 1 edition (September 28, 2008)
  • Language: English
  • ISBN-10: 0691126771
  • ISBN-13: 978-0691126777
  • Product Dimensions: 1.1 x 6 x 9.1 inches
  • Shipping Weight: 1.1 pounds (View shipping rates and policies)
  • Average Customer Review: 4.7 out of 5 stars  See all reviews (23 customer reviews)
  • Amazon Best Sellers Rank: #793,167 in Books (See Top 100 in Books)

Editorial Reviews

Review

Winner of the 2010 Euler Book Prize, Mathematical Association of America

One of Choice's Outstanding Academic Titles for 2009

"The author has achieved a remarkable feat, introducing a nave reader to a rich history without compromising the insights and without leaving out a delicious detail. Furthermore, he describes the development of topology from a suggestion by Gottfried Leibniz to its algebraic formulation by Emmy Noether, relating all to Euler's formula. This book will be valuable to every library with patrons looking for an awe-inspiring experience."--Choice

"This is an excellent book about a great man and a timeless formula."--Charles Ashbacher, Journal of Recreational Mathematics

"I liked Richeson's style of writing. He is enthusiastic and humorous. It was a pleasure reading this book, and I recommend it to everyone who is not afraid of mathematical arguments and has ever wondered what this field of 'rubbersheet geometry' is about. You will not be disappointed."--Jeanine Daems, Mathematical Intelligencer

"The book is a pleasure to read for professional mathematicians, students of mathematicians or anyone with a general interest in mathematics."--European Mathematical Society Newsletter

"I found much more to like than to criticize in Euler's Gem. At its best, the book succeeds at showing the reader a lot of attractive mathematics with a well-chosen level of technical detail. I recommend it both to professional mathematicians and to their seatmates."--Jeremy L. Martin, Notices of the AMS

"I highly recommend this book for teachers interested in geometry or topology, particularly for university faculty. The examples, proofs, and historical anecdotes are interesting, informative, and useful for encouraging classroom discussions. Advanced students will also glimpse the broad horizons of mathematics by reading (and working through) the book."--Dustin L. Jones, Mathematics Teacher

"The book should interest non-mathematicians as well as mathematicians. It is written in a lively way, mathematical properties are explained well and several biographical details are included."--Krzysztof Ciesielski, Mathematical Reviews

From the Inside Flap

"Euler's Gem is a thoroughly satisfying meditation on one of mathematics' loveliest formulas. The author begins with Euler's act of seeing what no one previously had, and returns repeatedly to the resulting formula with ever more careful emendations and ever-widening points of view. This highly nuanced narrative sweeps the reader into the cascade of interlocking ideas which undergird modern topology and lend it its power and beauty."--Donal O'Shea, author of The Poincaré Conjecture: In Search of the Shape of the Universe

"Beginning with Euler's famous polyhedron formula, continuing to modern concepts of 'rubber geometry,' and advancing all the way to the proof of Poincaré's Conjecture, Richeson's well-written and well-illustrated book is a gentle tour de force of topology."--George G. Szpiro, author of Poincaré's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles

"A fascinating and accessible excursion through two thousand years of mathematics. From Plato's Academy, via the bridges of Königsberg, to the world of knots, soccer balls, and geodesic domes, the author's enthusiasm shines through. This attractive introduction to the origins of topology deserves to be widely read."--Robin Wilson, author of Four Colors Suffice: How the Map Problem Was Solved

"Appealing and accessible to a general audience, this well-organized, well-supported, and well-written book contains vast amounts of information not found elsewhere. Euler's Gem is a significant and timely contribution to the field."--Edward Sandifer, Western Connecticut State University

"Euler's Gem is a very good book. It succeeds in explaining complicated concepts in engaging layman's terms. Richeson is keenly aware of where the difficult twists and turns are located, and he covers them to satisfaction. This book is engaging and a joy to read."--Alejandro Lpez-Ortiz, University of Waterloo


More About the Author

Discover books, learn about writers, read author blogs, and more.

Customer Reviews

4.7 out of 5 stars
5 star
17
4 star
6
3 star
0
2 star
0
1 star
0
See all 23 customer reviews
While the book is very easy to read, I learned some very interesting mathematical concepts from it.
J. Wrenholt
This is such an easy way to approach topology and I wish my classes had started here, rather than with point sets and limits.
Sundadar
I really, really recommend this book, especially to the lay audience, and high school/undergraduate students in particular.
Daniel Shaffer

Most Helpful Customer Reviews

72 of 74 people found the following review helpful By Gene B. Chase on December 22, 2008
Format: Hardcover
If you want a popularized book-length treatment of string theory, you have two kinds of choices. Brian Greene uses no equations, save in an occasional endnote. Roger Penrose uses 1136 equation-filled pages to teach you all of mathematics you would need to know--although far too fast for anyone to learn it from Penrose alone. There is not much between Greene and Penrose.

If you wanted a popularized book-length treatment of topology before Dave Richeson's Euler's Gem: The Polyhderal Formula and the Birth of Topology, you had no choice at all.

This is a risky thing that Richeson attempts. Ian Stewart's 2007 book Why Beauty is Truth: The History of Symmetry cites the "conventional wisdom in science writing that every equation halves a book's sales." (34) On this basis, Richeson's book should have only
one ten billionth of the sales of other books popularizing science. Yet Richeson pulls it off with a well-written, nicely illustrated book surveying the history of topology from Plato to Poincaré to Perelman.

Richeson's book is accessible to an academically minded high school student, yet has something to offer the professional mathematican who happens not to be a topologist.

There are no typos in the book. There is a useful, although not comprehensive index. (Richeson mentions flexible polyhedra -- see mathworld.wolfram.com/FlexiblePolyhedron.html -- for example, but the index doesn't.) The only slight confusion that I encountered is at page 157, which says that we have seen V-E+F = 2-2g before. We have not. However, on page 148, we saw V-E+F = 2 - 2T + P + 2C, so let P = C = 0 and rename T as g, and all is clear.

Richeson's book ends on the theme of beauty, and well it should. It's a beautiful book! I bought three as Christmas presents for friends. You should buy one too.
2 Comments Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
24 of 28 people found the following review helpful By Dave on December 6, 2008
Format: Hardcover Verified Purchase
I really enjoyed this book. I found that the David Richeson's writing style made this topic very accessible. I thought that there was just the right balance of history and math. Having little experience with topology, learned a lot about it. I was really astounded at some of the unexpected connections between "Euler's Gem" and different branches of math.

Lots of fun!
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
17 of 19 people found the following review helpful A Kid's Review on January 19, 2010
Format: Hardcover
Euler's Gem is a fascinating & well written book. However, it is also a pretty challenging read, one can not really sit back & read it straight through. But this is also what mathematics & learning is all about, as you often have to stop, re-read, & think a bit about what is being said. The claim is made that someone with only high school mathematics could read the book, & while this is probably true, it would be a steep climb. Especially as one progresses further & further into the book, many references are made to calculus, differential equations, & other related ideas, which the author does a fantastic job of explaining the ideas to people that never had the courses, but in the end it really would help the reader to have that knowledge beforehand.

What makes this a five star book is that it is so rich in knowledge. The average person won't be able to read it in a week, but if you're willing to put the time into the book, you'll get a lot of out it as it really is a great introduction to topology. Even if you can't pick up all the concepts, you're sure to be able to pick up many of the neat tricks the author points out, such as the wedding ring knot, coloring map problem, etc. Overall, one of the best books I've ever read, & one day I'll probably have to re-read it again because it's just so rich & packed with knowledge.
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
Format: Hardcover
The title of the book is derived from the formula V - E + F = 2 that holds for any polyhedron. V is the number of vertices, E the number of edges and F the number of faces. First demonstrated by Euler, the proof of this result is surprisingly simple. As is the case with most such formulas and their proofs, there is at least one near miss in the history of mathematics. Descartes was close; in retrospect it is somewhat surprising that he didn't reach the appropriate conclusion. Of course, we are considering the great master Euler here, a giant of mathematics who was able to see things in his mathematical sight that people with the physical vision that he lacked overlooked.
Topology is a relatively recent area of mathematics, one of the few that can be considered to have had a point of origin and a creator. Richison works through the historical mathematical preliminaries of the formula, the shapes it describes were well known to the ancient Greeks yet they were nowhere close to the formula. Some historical and mathematical background on Euler follows this and it includes some of his other accomplishments. The last chapters describe some of the results that follow from topology in general and Euler's gem in particular. One of the most interesting is the theorem of combing a sphere, where the conclusion is that there must always be at least one hair that stands straight up. This may seem like an absurd thing for mathematicians to be concerned about but it has a major conclusion, that at all times there must be at least one point on Earth where there is no wind. Even more significantly it means that there will always be a zero.
Richison uses a large number of diagrams and formulas when needed, which is to his credit.
Read more ›
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again

Customer Images

Most Recent Customer Reviews

Search

What Other Items Do Customers Buy After Viewing This Item?