This title is not currently available for purchase
Flip to back Flip to front
Audible Narration Playing... Paused   You are listening to a sample of the Audible narration for this Kindle book.
Learn more

Get the Free Kindle App

Enter email or phone number to get a link

Processing your request...

Programming Collective Intelligence: Building Smart Web 2.0 Applications Kindle Edition

116 customer reviews

Rent from Amazon Price New from Used from
Kindle
"Please retry"
$8.36

Length: 362 pages

Shop the New Digital Design Bookstore
Check out the Digital Design Bookstore, a new hub for photographers, art directors, illustrators, web developers, and other creative individuals to find highly rated and highly relevant career resources. Shop books on web development and graphic design, or check out blog posts by authors and thought-leaders in the design industry. Shop now

Editorial Reviews

About the Author

Toby Segaran is a software developer and manager at Genstruct, a computational systems biology company. He has written free web applications for his own use and put them online for others to try, including: tasktoy, a task management system; Lazybase, an online application that lets users design, create and share databases of anything they like; and Rosetta Blog, an online tool for practicing Spanish and French by reading blogs along with their translations and lists of common words. Each of these has several hundred regular users.

Product Details

  • File Size: 1793 KB
  • Print Length: 362 pages
  • Simultaneous Device Usage: Unlimited
  • Publisher: O'Reilly Media; 1 edition (December 17, 2008)
  • Publication Date: December 17, 2008
  • Language: English
  • ASIN: B0028N4WM4
  • Text-to-Speech: Enabled
  • X-Ray:
  • Word Wise: Not Enabled
  • Lending: Not Enabled
  • Enhanced Typesetting: Not Enabled
  • Amazon Best Sellers Rank: #459,032 Paid in Kindle Store (See Top 100 Paid in Kindle Store)
  •  Would you like to give feedback on images?


More About the Author

Toby Segaran is the author of "Programming Collective Intelligence," one of Amazon's top-selling AI books of all time. His latest titles, "Programming the Semantic Web" and "Beautiful Data" were released in July. He speaks on the subjects of machine learning, collective intelligence and freedom of data at conferences worldwide.

He currently holds the title of Data Magnate at Metaweb Technologies, where he works on large-scale data reconciliation problems. He is also a cofounder of freerisk.org, a non-profit aimed at creating more financial transparency.

Prior to Metaweb he founded Incellico, a biotechbology software company acquired in 2003. He holds a B.Sc. in Computer Science from MIT and US Government deems him a "Person of Exceptional Ability."

Customer Reviews

Most Helpful Customer Reviews

171 of 177 people found the following review helpful By Syd Logan on December 18, 2007
Format: Paperback Verified Purchase
This book is probably best for those of you who have read the theory, but are not quite sure how to turn that theory into something useful. Or for those who simply hunger for a survey of how machine learning can be applied to the web, and need a non-mathematical introduction.

My area of strength happens to be neural networks (my MS thesis topic was in the subject), so I will focus on that. In a few pages of the book, the author describes how the most popular of all neural networks, backpropagation, can be used to map a set of search terms to a URL. One might do this, for example, to try and find the page best matching the search terms. Instead of doing what nearly all other authors will do, prove the math behind the backprop training algorithm, he instead mentions what it does, and goes on to present python code that implements the stated goal.

The upside of the approach is clear -- if you know the theory of neural networks, and are not sure how to apply it (or want to see an example of how it can be applied), then this book is great for that. His example of adaptively training a backprop net using only a subset of the nodes in the network was interesting, and I learned from it. Given all the reading I have done over the years on the subject, that was a bit of a surprise for me.

However, don't take this book as being the "end all, be all" for understanding neural networks and their applications. If you need that, you will want to augment this book with writings that cover some of the other network architectures (SOM, hopfield, etc) that are out there. The same goes for the other topics that it covers.
Read more ›
3 Comments Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
85 of 88 people found the following review helpful By Leo Dirac on August 17, 2007
Format: Paperback Verified Purchase
Segaran has done an excellent job of explaining complex algorithms and mathematical concepts with clear examples and code that is both easy to read and useful. His coding style in Python often reads as clearly as pseudo-code in algorithm books. The examples give real-world grounding to abstract concepts like collaborative filtering and bayesian classification.

My favorite part is how he shows us code (gives it to us!) that goes out into the world, grabs masses of data and does interesting things with it. The use of a hierarchical clustering algorithm to dig into people's intrinsic desires in life as expressed in zebo is worth the price of the book alone. The graph that shows a strong connection between "wife", "kids", and "home" but a different connection between "husband", "children", and "job" is IMHO just fascinating.

Gems like that make this book worth reading cover to cover. After that it can happily hang out on your shelf as a reference anytime you need to build something to mine user data and extract the wisdom of crowds.
2 Comments Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
56 of 58 people found the following review helpful By Kyle on December 4, 2013
Format: Paperback Verified Purchase
This is the first time I've actually taken the time to write out a review. I'm sure this book was awesome when it first came out, it is clear, concise and has a nice follow-along structure. However, it has become outdated and it is riddled with either old syntax and errors. I have gotten past most of that though. The worst part is probably that the files that are used in some of the examples are hosted on the authors blog and have been taken down. If he can't be bothered to continue hosting old files for people who may buy the book (or point us to somewhere to get them) we shouldn't be bothered to buy it.
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
67 of 71 people found the following review helpful By Thomas Duff HALL OF FAMETOP 1000 REVIEWERVINE VOICE on October 20, 2007
Format: Paperback
Have you ever wondered how some of those "collective intelligence" sites work? How Amazon can suggest books that you'll like based on your browsing history? How a search engine can rank and filter results? Toby Segaran does a very good job in revealing and teaching those types of algorithms in his book Programming Collective Intelligence: Building Smart Web 2.0 Applications. While I'm not ready to run out and build my own version of Facebook now, at least I can start to understand how sites like that are designed.

Contents:
Introduction to Collective Intelligence; Making Recommendations; Discovering Groups; Searching and Ranking; Optimization; Document Filtering; Modeling with Decision Trees; Building Price Models; Advanced Classification - Kernel Methods and SVMs; Finding Independent Features; Evolving Intelligence; Algorithm Summary; Third-Party Libraries; Mathematical Formulas; Index

In each of the chapters, Segaran takes a type of capability, be it decision-making or filtering, and shows how a programming language can be used to build that feature. His examples are all in Python, so it helps if you are already familiar with that language if you want to actually work with the code. But even if you don't know Python, the examples are clear and detailed enough that you can follow along and get the gist of what's happening. I personally think that it would help immensely if you had a background in mathematics and statistics. You can use the code here without having a detailed understanding of math, but I'm sure much of this would be more deeply appreciated if you already know about such things as Tanimoto similarity scores, Euclidean distances, or Pearson coefficients.
Read more ›
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again

Most Recent Customer Reviews


Forums

Topic From this Discussion
Whoa. Be the first to reply
Have something you'd like to share about this product?
Start a new discussion
Topic:
First post:
Prompts for sign-in
 


Search Customer Discussions
Search all Amazon discussions

What Other Items Do Customers Buy After Viewing This Item?