The Day We Found the Universe and over one million other books are available for Amazon Kindle. Learn more
Qty:1
  • List Price: $27.95
  • Save: $8.16 (29%)
FREE Shipping on orders over $35.
Only 4 left in stock (more on the way).
Ships from and sold by Amazon.com.
Gift-wrap available.
FREE Shipping on orders over $35.
Condition: Used: Good
Comment: Solid used copy with visible wear to covers. May contain underlines or highlights. Ships directly to you with tracking from Amazon's warehouse - fast, secure and FREE WITH AMAZON PRIME.
Have one to sell? Sell on Amazon
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See this image

The Day We Found the Universe Hardcover – April 7, 2009


See all 7 formats and editions Hide other formats and editions
Amazon Price New from Used from
Kindle
"Please retry"
Hardcover
"Please retry"
$19.79
$14.17 $0.01
Unknown Binding
"Please retry"
--This text refers to the Paperback edition.


Frequently Bought Together

The Day We Found the Universe + Archives of the Universe: 100 Discoveries That Transformed Our Understanding of the Cosmos
Price for both: $35.90

Buy the selected items together

NO_CONTENT_IN_FEATURE

Little-Known Facts
Discover surprising facts from Marcia Bartusiak's The Day We Found the Universe [PDF].

Product Details

  • Hardcover: 368 pages
  • Publisher: Pantheon; First Edition edition (April 7, 2009)
  • Language: English
  • ISBN-10: 0375424296
  • ISBN-13: 978-0375424298
  • Product Dimensions: 9.4 x 6.3 x 1.6 inches
  • Shipping Weight: 1.4 pounds (View shipping rates and policies)
  • Average Customer Review: 4.8 out of 5 stars  See all reviews (27 customer reviews)
  • Amazon Best Sellers Rank: #840,626 in Books (See Top 100 in Books)

Editorial Reviews

Amazon.com Review

Book Description
From one of our most acclaimed science writers: a dramatic narrative of the discovery of the true nature and startling size of the universe, delving back past the moment of revelation to trace the decades of work--by a select group of scientists--that made it possible.

On January 1, 1925, thity-five-year-old Edwin Hubble announced findings that ultimately established that our universe was a thousand trillion times larger than previously believed, filled with myriad galaxies like our own. It was a realization that reshaped how humans understood their place in the cosmos. Six years later, continuing research by Hubble and others forced Albert Einstein to renounce his own cosmic model and finally accept the astonishing fact that the universe was not immobile but instead expanding. The story of these interwoven discoveries includes battles of will, clever insights, and wrong turns made by the early investigators in this great twentieth-century pursuit, from the luminaries (Einstein, Hubble, Harlow Shapley) to the lesser known: Henrietta Leavitt, who discovered the means to measure the vast dimensions of the cosmos . . . Vesto Slipher, the first and unheralded discoverer of the universe’s expansion... Georges Lemaître, the Jesuit priest who correctly interpreted Einstein’s theories in relation to the universe... Milton Humason, who, with only an eighth-grade education, became a world-renowned expert on galaxy motions... and others.

Here is the watershed moment in our cosmic history, splendidly arising from the exceptional combination of human curiosity, intelligence, and enterprise.


Amazon Exclusive: A Q&A with Marcia Bartusiak

Question: Was there really a single day when the modern universe was revealed?

Marcia Bartusiak: In some ways there was a unique day: January 1, 1925, at the height of the Roaring Twenties. That’s the day when astronomer Edwin Hubble finally announced that the Milky Way was not alone but surrounded by sister galaxies just like our own. Eventually, Hubble directed our eyes to hundreds of billions of other galaxies, scattered like separate atoms through an ever-expanding space. It was the astronomical news of the century, if not of all astronomical history.

Q: In your book Hubble turns out to be a more complex character than portrayed in most astronomy books.

MB: He was an odd bird, but certainly a handsome one. Friends called him an Adonis. I think he resembles the British actor Jeremy Irons. Raised in Missouri, in a solid middle-class household, Hubble somewhere along the line yearned to be singular and distinct. Once he graduated from the University of Chicago, he went to Oxford University as a Rhodes scholar, where he completely reinvented himself; he adopted a British accent that he maintained for the rest of his life, dressed like a dandy, and began to add dubious credentials to his resume, like saying he once practiced law, which he never did. He married into a rich Los Angeles family, and throughout his life seemed intent on erasing his Midwestern roots. His wife never met Hubble’s mother or siblings. Hubble was not chums with his astronomy colleagues but preferred to socialize with the actors and writers in nearby Hollywood. One astronomer called Hubble, often arrogant and standoffish, a “stuffed shirt.”

Yet, while Hubble fibbed to his friends about his background, he was meticulously careful about his science. In fact, when he obtained the first evidence in early 1924 that the Andromeda nebula was truly a distant galaxy, he held off an official report for almost a year. He first wanted to counter every possible argument against his find. Being caught in a scientific error was Hubble’s greatest nightmare. And when he did finally release the data at that astronomy meeting on New Year’s Day in 1925, after a lot of arm-twisting from his colleagues, he wasn’t even there. He had someone else relay the findings.

Q: The Day We Fond the Universe informs us that there were numerous important figures whose efforts contributed to this monumental discovery—that Hubble didn’t do it alone as the textbooks today seem to imply.

MB: Not at all. This is a far richer story--filled with trials and errors, serendipitous breaks, battle of wills, and missed opportunities. Several astronomers could have snatched victory years before Hubble but for various reasons didn’t. However, they constructed the firm foundation that allowed Hubble to step in and make his great discoveries, revealing the modern universe as we know it today.

Q: Who are some of those other astronomers?

MB: The first was James Keeler, then director of the Lick Observatory on Mount Hamilton in California near San Jose, the first observatory in the world to place a gigantic telescope at high elevation. Its lenses were a yard wide. But Keeler chose to spend his time at a smaller telescope, which every other astronomer on his staff despised. He fixed it up and began to discover that there were tens of thousands of faint, disklike nebulae arrayed over the celestial sky. This was in 1899. At the time most astronomers thought these spiraling clouds were baby solar systems in the making. If he had continued, Keeler had a good chance of revealing they were actually galaxies, other Milky Ways. He had the smarts (he was one of the best astronomers in his day) and he had the equipment. But he died at the age of 42, likely of lung cancer. He was never seen without a cigar in his mouth. If he had lived, it might have been the “Keeler Space Telescope” now orbiting the Earth.

Q: Didn’t anyone follow-up?

MB: Not right away, oddly enough. Most astronomers at this time were primarily concerned with the Sun and stars. The study of nebulae was not popular. It wasn’t until the 1910s that Heber Curtis, another Lick Observatory astronomer, went back to the same telescope that Keeler used and advanced this work. He found so many new nebulae that he estimated there were at least a million around the sky. Moreover, he began to report that they were indeed distant galaxies. He told one reporter that one he sighted had to be 20 million light-years away, an astounding distance for its time.

Q: So why don’t we remember Curtis as the discoverer of the modern universe?

MB: Because all the evidence Curtis gathered was merely circumstantial. Astronomers were waiting for a “slam dunk.” The novae, or sudden flare-ups, that occasionally appeared in these spiraling nebulae suggested they were far-off, since the novae were so faint when compared to the ones that pop off in our own Milky Way. But no one was sure. Some of the novae were so bright, there wasn’t any physics to explain the phenomena. This was before astronomers understood that stars could completely explode. Curtis was on the verge of solving the mystery, but he took himself out of the game when he accepted the directorship of an observatory in Pennsylvania, where the nighttime skies were so bad that he could no longer compete.

What was needed to resolve the problem was an undeniable distance measurement out to those nebulae. It required a cosmic yardstick, but none was available. And that’s where an interesting woman, Henrietta Leavitt, comes in.

Q: The role of women in astronomical history is prominent in your work. What are the parallels between their experiences and those of contemporary female researchers?

MB: It was a far different time for women in the sciences at that time. Women astronomers weren’t allowed to observe on the major university telescopes. It was considered unseemly to have women and men work together on an isolated mountaintop. At Harvard, for example, women were mainly relegated to being what were called “computers”—staying in offices, scanning photographic plates and recording each star’s position, luminosity, and spectrum. Yet it was immensely valuable work. In the course of it, Henrietta Leavitt astutely discovered the celestial Rosetta Stone that later allowed Hubble to make his great discoveries. In 1912 she found a unique pattern to the blinking of variable stars called Cepheids. These are stars that repeatedly brighten and dim over a matter of days, weeks, or months. She revealed that the brighter Cepheids had the slower periods; the dimmer ones were faster. That meant you could follow the Cepheid’s change from afar, determine its period, which would let you know how bright the star is and hence how far away it was.

Harlow Shapley, a young up-and-comer at the new Mount Wilson Observatory in southern California, was the first to take advantage of this wonderful new yardstick, discovering that the Milky Way was far larger than anyone had ever suspected. Ten times larger. It was now 1918, and Shapley could have continued outward, determining the distances to those mysterious spiral nebulae and beaten Hubble to the brass ring--but he didn’t.

Q: Why not?

MB: Because Shapley was mulishly wedded to his own vision of the universe. To him, the Milky Way was so big that its borders defined the very boundaries of the universe. The spiral nebulae were mere appendages. He saw no reason to study them. He regretted that blunder for the rest of his life.

Hubble had by then arrived at Mount Wilson, and at first stood in Shapley’s shadow. Shapley was the golden boy of astronomy for his remake of the Milky Way. The two astronomers never got along, throughout their professional careers. Shapley, also from Missouri, retained his brassy and chummy country ways. Hubble’s affectation for wearing jodhpurs, leather puttees, and a beret while observing or going around and saying “Bah Jove” was simply too much for Shapley to bear. To Hubble’s relief, Shapley soon left Mount Wilson to become director of the Harvard College Observatory, which allowed Hubble to focus on the spiral nebulae and make his great discovery.

Q: How did Hubble go on to see the universe expanding?

MB: Well, that’s where the standard textbooks don’t get the story quite right. There was another astronomer, by the name of Vesto Slipher, who actually found the first glimmer of evidence that the spiral nebulae were fleeing outward. He did this from the Lowell Observatory in Arizona. By 1917 Slipher was sure they were distant galaxies and even reported they might be “scattering” in some way. By 1925 he pegged the velocities of more than forty galaxies, a momentous accomplishment because the galaxies are so faint. It sometimes took weeks at the telescope for Slipher to clinch just one velocity.

In 1929 Hubble took on a partner, Milton Humason, to see if the galaxies were moving outward in a specific way. Hubble pegged the galaxies’ distances, while Humason measured their velocities. Putting this information together, Hubble did find a trend: the velocity of the galaxies steadily increased as he probed deeper and deeper into space. At double the distance, a galaxy’s speed doubled as well. But when Hubble first published this rule, he solely used Slipher’s data already on hand. Yet he made no mention whatsoever of Slipher in the paper--no citation, no acknowledgment, a serious breach of scientific protocol. Slipher deserves half the credit but is now largely forgotten by the public.

Moreover, Hubble had no idea at this stage that his newfound rule meant the universe was expanding. That understanding didn’t arrive until 1930, when astronomers finally became acquainted with the work of the Belgian Georges Lemaître, both a theorist and Jesuit priest. Working out a cosmological model based on Einstein’s general theory of relativity, Lemaître predicted that space-time was moving outward, with the galaxies going along for the ride. He did this in 1927, two years before Hubble even published his rule. But Lemaître’s model went unnoticed for a couple years, because it was published in an obscure Belgian journal.

But today this story is now vastly simplified: everyone says Hubble went to the great 100-inch telescope on Mount Wilson and, voilá, discovered the expanding universe. It’s an ironic twist, because Hubble was never a champion of a universe ballooning outward. “It is difficult to believe that the [galaxy] velocities are real,” he told a reporter. Up until he died in 1953, he always referred to the galaxy speeds as “apparent velocities,” to protect his legacy just in case a new law of physics sneaked in and changed the explanation. Hubble coveted an unblemished record: the perfect wife, the perfect scientific findings, the perfect friends, the perfect life.

Q: You write about these astronomical discoveries in light of the cultural and geopolitical context of the early 20th century. What were the connections?

MB: It was a unique moment, a fantastic era when technology was rapidly on the rise. Astronomy blossomed within this atmosphere. Cameras became standard equipment on telescopes, capturing pictures of stars and nebulae never before seen. And spectroscopes allowed astronomers to discern the very chemistry of the heavens. More important, prominent industrialists, enriched by the bounty of the Gilded Age, provided the money that allowed American astronomers to construct the large telescopes so crucial to solving the mystery of the spiral nebulae.

In this venture, American astronomers were also aided by a more somber event. European astronomers were diverted by World War I and its resulting turmoil. This allowed American astronomers to freely push forward on the most outstanding question of the day. Figuring out the universe’s true nature became an American obsession, its participants drawn from the Lick, Mount Wilson, and Lowell observatories newly built in the U.S. West. The world’s older observatories didn’t have a chance at all, because the Americans had the most advanced telescopes perched on high-elevation sites, a combination that was essential to cracking the mystery.

From Publishers Weekly

Starred Review. Science writer Bartusiak (Through a Universe Darkly) vividly tells the story behind the discovery that changed our cozy view of the universe. One hundred years ago, the Milky Way was all the cosmos we knew, a lone, star-filled oasis surrounded by a darkness of unknown depth. But in 1929, word came that the universe was expanding. The find is largely attributed to astronomer Edwin Hubble, a Rhodes scholar and dandy, while he was observing the heavens through Mount Wilson's 100-inch telescope. Hubble became a media hit, but as Bartusiak explains, this finding was part of a long chain of discoveries made at the time. James Keeler's stellar photographs first revealed mysterious celestial flocks of fainter nebulae, and Henrietta Leavitt's relentless study of variable stars became the basis for determining stellar distances. Hubble's rival, Harlow Shapley, unveiled the architecture of the Milky Way and Earth's insignificant position within it. From the women computers who analyzed stellar photographs for Harvard to Mars-mad Percival Lowell, Bartusiak reveals the vibrant beginnings of modern astronomy, along with all the dreams and fears, rivalries and triumphs, of those involved. (Apr. 7)
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

More About the Author

Combining her training as a journalist with a master's degree in physics, Marcia Bartusiak has been covering the fields of astronomy and physics for three decades. She is currently a professor of the practice in the Graduate Program in Science Writing at the Massachusetts Institute of Technology and has published in a variety of publications, including Science, Smithsonian, Discover, Technology Review, National Geographic, and Astronomy. She is the author of "Thursday's Universe," a guide to the frontiers of astrophysics; "Through a Universe Darkly," a history of astronomers' quest to discover the universe's composition; and "Einstein's Unfinished Symphony," a chronicle of the international attempt to detect cosmic gravity waves. All three were named notable books by the New York Times. She went on to write "Archives of the Universe," an anthology and commentary on the historic discovery papers in astronomy, and most recently "The Day We Found the Universe," on the birth of modern cosmology, which won the Davis Prize from the History of Science Society. Bartusiak is also a two-time winner of the American Institute of Physics Science Writing Award and in 2006 garnered the AIP's prestigious Gemant Award for her "significant contributions to the cultural, artistic, or humanistic dimension of physics." In 2008 Bartusiak was elected a Fellow of the American Association for the Advancement of Science, cited for "exceptionally clear communication of the rich history, the intricate nature, and the modern practice of astronomy to the public at large." Bartusiak lives with her husband, mathematician Steve Lowe, and their dog Hubble, a bearded collie, in a suburb of Boston.

Customer Reviews

4.8 out of 5 stars
5 star
24
4 star
2
3 star
0
2 star
1
1 star
0
See all 27 customer reviews
The author's style is very readable.
Sammy Yousef
I listened (and keep listening again from time to time) to this wonderful book in its audiobook version.
Mikey
It's an outstanding history lesson if you're into astronomy.
Lynette Campbell

Most Helpful Customer Reviews

17 of 17 people found the following review helpful By Bookworm Plus on June 7, 2009
Format: Hardcover
I am an astronomy hobbyist with little math or science background. Through excellent podcasts such as Astronomy Cast and Professor Richard Pogue's lectures at Ohio State University I have gained a lot of factual and theoretical knowledge over the past couple of years (but the more I learn the more ignorant I feel). With this background gained, I was able to appreciate, learn from, and enjoy "The Day We found the Universe" while getting a fresh perspective of the history of astronomy. The most interesting part of the book for me was the discovery of the nature of variable stars such as the Cepheids. These stars turned out to be what author Marcia Bartusiak describes as the "Rosetta stone" in understanding the universe. The most striking stream of this book is that the discovery of multiple galaxies in a huge expanding universe was the result of at least two centuries of astronomical exploration rather than a light turned on by Edwin Hubble. While by no means denigrating the achievement of Hubble, Bartusiak proves that the greatest accomplishment of 20th century astronomy was a joint effort as many scientists built a foundation of small steps for Hubble to lay the final bricks. "The Day We Found the Universe fills a wonderful niche for hobbyists such as me. It is far from dumbed down, but steers clear of bogging down with too many technical details and mathematical formulas while teaching a lot and inspiring me with a hunger to deepen my understanding of the nature of universe.
2 Comments Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
21 of 22 people found the following review helpful By G. Poirier on May 21, 2009
Format: Hardcover
It must be challenging for an author who is writing on scientific and technical matters to strike an ideal balance that will both captivate the scientific types as well as fascinate the general readers. As difficult as this may be, this author has succeeded admirably. Focusing mainly on that scientifically heady period from the late nineteenth to the early twentieth centuries, she relates the story of how astronomers (and some physicists) discovered the immensity of the universe. In addition to clearly explaining the important scientific challenges and breakthroughs, the author does a fabulous job on the all-important human element. Here we meet the cast of characters with all of their virtues and shortcomings. Of course, their mutual interrelations also make for interesting reading - most of these being very positive while some much less so. The writing style is clear, friendly, widely accessible and quite gripping. Although science buffs (especially astronomy buffs) will likely consider this book a real treat, any interested general reader can also thoroughly enjoy it thanks to the author's very limited use of jargon and her clear explanations for any unfamiliar terms.
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
32 of 37 people found the following review helpful By Joseph Caruso on May 8, 2009
Format: Hardcover
the best review of how the universe was discovered in the first half of the 20th century; I haven't enjoyed a book like this since I read "The Red Limit" by Ferris back when I was just aspiring to become an astronomer. This book corrects the common misconception that Hubble, Hale and Einstein were the only players in a very convoluted story with many dead ends and false leads. I espically liked that V. M. Slipher, Heber Curtis and in particular Milton Humason (since I could identify with someone who spent uncountable hours in the observing room of a large telescope gathering data for astronomers), finally got at least some of the credit for what was clearly an international effort to reveal the true nature of the universe. A big thumbs up! Perhaps in the future Ms. Bartusiak will write about how humanity discovered the true nature, distances, and lives of the stars. joe caruso
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
6 of 6 people found the following review helpful By W. Dempsey on July 4, 2009
Format: Hardcover
This is an extremely interesting and unusually well-written book. It is a carefully researched, but very entertainingly presented, history of early astrophysics. The author describes most of the astronomers and astrophysicists of the late 19th and early 20th century. She presents arguments, calculations and/or observations they made that led to the discovery that many of the "fuzzy" objects seen in a dark sky are huge galaxies that lie outside of our Milky Way galaxy. The author writes with great style and with lots of detail about the individuals as well as their discoveries and arguments with each other. As a scientist, I was struck most of all by the huge amount of time someone like Hubble spent establishing that these other galaxies exist, how large they are and that the universe is expanding. We all remember the "Billions and Billions" phrases from early TV, but usually have no clue how many people spent their professional lives establishing these facts and dealing with those who had trouble accepting them.
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again
5 of 6 people found the following review helpful By Amazon Customer on June 2, 2009
Format: Hardcover
The late 1800s and early 1900s were definitely a time of change in many areas, as everyone knows, including the field of astronomy. This book points out a number of amazing things that those of us living 80-100 years after the events of this book maybe don't think about. First of all, it wasn't that long ago that scientists didn't even know some basic things like the age and size of the universe, the existence of other galaxies and the origins of the cosmos. While there wasn't necessarily one day when it all came into focus, the events described in this book led to answers falling into places once Edwin Hubble published some of his findings, thus the title is interestingly appropriate in a number of ways. Second, when we think about events so long ago, they tend to blend together and we tend to focus on one or two landmark publications or facts, but as this book points out, some of the answers were only arrived at after years and decades of consideration by astronomers based on painstaking observations and calculations. It's not like Hubble looked into a telescope one day and saw something that instantly changed everything, even though he did discover something one day that eventually led to a resolution of many of the questions of his day. Most of the astronomers described in this book spent hours upon hours in cold domes photographing distant objects many times over the course of days, months and years. This book is not necessarily that different from many popular books on science in that it covers the history of discoveries by mixing the actual science with biographical material on the scientists. This book is special in that the mix is just right. The author doesn't go overboard with either the mundane details of the astronomers' personal lives or the complexities of the science.Read more ›
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback. If this review is inappropriate, please let us know.
Sorry, we failed to record your vote. Please try again

Customer Images

Most Recent Customer Reviews