Customer Reviews


821 Reviews
5 star:
 (469)
4 star:
 (215)
3 star:
 (84)
2 star:
 (30)
1 star:
 (23)
 
 
 
 
 
Average Customer Review
Share your thoughts with other customers
Create your own review
 
 

The most helpful favorable review
The most helpful critical review


625 of 650 people found the following review helpful
5.0 out of 5 stars Much-needed insight to understand and improve predictive science
This is the best general-readership book on applied statistics that I've read. Short review: if you're interested in science, economics, or prediction: read it. It's full of interesting cases, builds intuition, and is a readable example of Bayesian thinking.

Longer review: I'm an applied business researcher and that means my job is to deliver quality forecasts:...
Published 23 months ago by Sitting in Seattle

versus
534 of 647 people found the following review helpful
2.0 out of 5 stars Disappointing, too much noise, too little insight
This book was a disappointment for me, and I feel that the time I spent reading it has been mostly wasted. I will first, however, describe what I thought is *good* about the book. Everything in this book is very clear and understandable. As for the content, I think that the idea of Baysean thinking is interesting and sound. The idea is that, whenever making any hypothesis...
Published 23 months ago by Ilya Grigoriev


‹ Previous | 1 283 | Next ›
Most Helpful First | Newest First

625 of 650 people found the following review helpful
5.0 out of 5 stars Much-needed insight to understand and improve predictive science, September 27, 2012
Verified Purchase(What's this?)
This is the best general-readership book on applied statistics that I've read. Short review: if you're interested in science, economics, or prediction: read it. It's full of interesting cases, builds intuition, and is a readable example of Bayesian thinking.

Longer review: I'm an applied business researcher and that means my job is to deliver quality forecasts: to make them, persuade people of them, and live by the results they bring. Silver's new book offers a wealth of insight for many different audiences. It will help you to develop intuition for the kinds of predictions that are possible, that are not so possible, where they may go wrong, and how to avoid some common pitfalls.

The core concept is this: prediction is a vital part of science, of business, of politics, of pretty much everything we do. But we're not very good at it, and fall prey to cognitive biases and other systemic problems such as information overload that make things worse. However, we are simultaneously learning more about how such things occur and that knowledge can be used to make predictions better -- and to improve our models in science, politics, business, medicine, and so many other areas.

The book presents real-world experience and critical reflection on what happens to research in social contexts. Data-driven models with inadequate theory can lead to terrible inferences. For example, on p. 162: "What happens in systems with noisy data and underdeveloped theory - like earthquake prediction and parts of economic and political science - is a two-step process. First, people start to mistake the noise for a signal. Second, this noise pollutes journals, blogs, and news accounts with false alarms, undermining good science and setting back our ability to understand how the system really works." This is the kind of insight that every good practitioner acquires through hard-won battles, and continues to wrestle every day both in doing work and in communicating it to others.

It is both readable and technically accurate: it presents just enough model details yet avoids being formula-heavy. Statisticians will be able to reproduce models similar to the ones he discusses, but general readers will not be left out: the material is clear and applicable. Scholars of all stripes will appreciate the copious notes and citations, 56 pages of notes and another 20 pages of index, which detail the many sources. It is also important to note that this is perhaps the best general readership book from a Bayesian perspective -- a viewpoint that is overdue for readable exposition.

The models cover a diversity of areas from baseball to politics, from earthquakes to finance, from climate science to chess. Of course this makes the book fascinating to generalists, geeks, and breadth thinkers, but perhaps more importantly, I think it serves well to develop reusable intuition across domains. And, for those of us who practice such things professionally, to bring stories and examples that we can tell and use to illustrate concepts with the people we inform.

There are three audiences who might not appreciate the book as much. First are students looking for a how-to book. Silver provides a lot of pointers and examples, but does not get into nuts and bolts details or supply foundational technical instruction. That requires coursework in research methods and and statistics. Second, his approach to doing multiple models and interpreting them humbly will not satisfy those who promote a naive, gee-whiz, "look how great these new methods are" approach to research. But then, that's not a problem; it's a good thing. The third non-fitting audience will be experts who desire depth in one of the book's many topic areas; it's not a technical treatise for them and I can confidently predict grumbling in some quarters. Overall, those three audiences are small, which happily leaves the rest of us to enjoy the book.

What would make it better? As a pro, I'd like a little more depth (of course). It emphasizes games a little too much for my taste. And a clearer prescriptive framework could be nice (but also could be a problem for reasons he illustrates). But those are minor points; it hits its target better than any other such book I know.

Conclusion: if you're interested in scientific or statistical forecasting, either as a professional or layperson, or if you simply enjoy general science books, get it. Cheers!
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


215 of 226 people found the following review helpful
5.0 out of 5 stars Great book, and here are some takeaways, November 11, 2012
By 
Verified Purchase(What's this?)
Excellent book!!! People looking for a "how to predict" silver bullet will (like some reviewers here) be disappointed, mainly because Silver is too honest to pretend that such a thing exists. The anecdotes and exposition are fantastic, and I wish we could make this book required reading for, say, everyone in the country.

During election season, everyone with a newspaper column or TV show feels entitled to make (transparently partisan) predictions about the consequences of each candidate's election to unemployment/crime/abortion/etc. This kind of pundit chatter, as Silver notes, tends to be insanely inaccurate. But there are also some amazing success stories in the prediction business. I list some chapter-by-chapter takeaways below (though there's obviously a lot depth more to the book than I can fit into a list like this):

1. People have puzzled over prediction and uncertainty for centuries.

2. TV pundits make terrible predictions, no better than random guesses. They are rewarded for being entertaining, and not really penalized for being wrong.

3. Statistics has revolutionized baseball. But computer geeks have not replaced talent scouts altogether. They're working together in more interesting ways now.

4. Weather prediction has gotten lots better over the last fifty years, due to highly sophisticated, large-scale supercomputer modeling.

5. We have almost no ability to predict earthquakes. But we know that some regions are more earthquake prone, and that in a given region an earthquake of magnitude n happens about ten times as often as an earthquake of magnitude (n+1).

6. Economists are terrible at predicting quantities such as next year's GDP. Predictions are only very slightly correlated with reality. They also tend to be overconfident, drastically underestimating the margin of error in their guesses. Politically motivated predictions (such as those released by White House, historically) are even worse.

7. The spread of a disease like the flu is hard to predict. Sometimes we overreact because risk of under-reacting seems greater.

8. A few professional sports gamblers are able to make make a living by spotting meaningful patterns before others do, and being right slightly more than half the time.

9. Kasparov thought he could beat Deep Blue. Couldn't. Interesting tale of humans/computers trying to outguess each other.

10. Nate Silver made a living playing online poker for a few years. When the government tightened the rules, the less savvy players ("fish") stopped playing, and he found he couldn't make money any more. So he started FiveThirtyEight.

11. Efficient market hypothesis: market seems very efficient, but not perfectly so. Possible source of error: most investment is done by institutions, and individuals at these institutions are rewarded based on short term profits. Rational employees may have less career risk when they "bet with the consensus" than when they buck a trend: this may increase herding effects and makes bubbles worse. Note: Nate pointedly does not claim that one can make money on Intrade by betting based on FiveThirtyEight probabilities. But he stresses that Intrade prices are themselves probably heavily informed by poll-based models like the ones on FiveThirtyEight.

12. Climate prediction: prima facie case for anthropic warming is very strong (greenhouse gas up, temperature up, good theoretical reason for former causing latter). But lots of good reason to doubt accuracy of specific elaborate computer models, and most scientists admit uncertainty about details.

13. We failed to predict both Pearl Harbor and September 11. Unknown unknowns got us. Got to watch out for loose Pakistani nukes and other potential catastrophic surprises in the future.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


154 of 171 people found the following review helpful
5.0 out of 5 stars Lively statistics, November 7, 2012
Verified Purchase(What's this?)
This book explains the unerring accuracy for Nate SIlver's election predictions using Bayesian statistics. The BEST part of the book for me was that I finally understand Bayes' analysis. I used quite a few sophisticated statistical tools in my work (retired as reliability physics expert for semiconductor devices, aka chips), but I was never able to grasp Bayes Theorem until now. Wikipedia's "tutorial" was far too complicated even for a PhD, but Nate provided a simple version that a layman can understand ... and he did it using a hilarious example (look for "cheating"). In fact, I am so impressed with Bayes' analysis that I am thinking about writing a corollary to my two best technical papers grafting a Bayesian view.
Returning to the election prediction issue, consider that each poll of 1000 people has a sampling error of +-5%, easily derived from Poisson statistics. However, when one pools the results from say 25 polls (and removes bias), the sample size is increased by 25-fold, which reduces the sampling error by 5-fold, down to +-1%. Thus, one can make confident predictions over differences FAR smaller than the usual sampling error. When one combines Bayesian pooling with a state-by-state analysis, one can make astonishingly accurate predictions ... Nate predicted ALL 50 states correctly, so his electoral count was exactly on reality as well when fractional electoral counts are eliminated.
Buy the book as it is educational and fun to read.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


534 of 647 people found the following review helpful
2.0 out of 5 stars Disappointing, too much noise, too little insight, September 30, 2012
This book was a disappointment for me, and I feel that the time I spent reading it has been mostly wasted. I will first, however, describe what I thought is *good* about the book. Everything in this book is very clear and understandable. As for the content, I think that the idea of Baysean thinking is interesting and sound. The idea is that, whenever making any hypothesis (e.g. a positive mammogram is indicative of breast cancer) into a prediction (for example, that a particular woman with a positive mammogram actually has cancer), one must not forget to estimate all the following three pieces of information:

1. The general prevalence of breast cancer in population. (This is often called the "prior": how likely did you think it was that the woman had cancer before you saw the mammogram)

2. The chance of getting a positive mammogram for a woman with cancer.

3. The chance of getting a positive mammogram for a woman without cancer.

People often tend to ignore items 1 and 3 on the list, leading to very erroneous conclusions. "Bayes rule" is simply a mathematical gadget to combine these three pieces of information and output the prediction (the chance that the particular woman with a positive mammogram has cancer). There is a very detailed explanation of this online (search Google for "yudkowsky on bayes rule"), no worse (if more technical) than the one in the book. If you'd like a less technical description, read chapter 8 of the book (but ignore the rest of it).

------------

Now for the *bad*. While the Baysean idea is valuable, its description would fit in a dozen of pages, and it is certainly insufficient by itself to make good predictions about the real world. I had hoped that the book would draw on the author's experience and give an insight into how to apply this idea in the real world. It does the former, but not he latter. There are lots of examples and stories (sometimes amusing; I liked the Chess story in Chapter 9), but the stories lead the reader to few insights.

The examples only lead to one conclusion clearly. If you need to be convinced that "the art of making predictions is important, but it is easy to get wrong", read this book. If you wonder: "how can we actually make good predictions?", don't. The only answers provided are useless platitudes: for example, "it would be foolish to ignore the commonly accepted opinion of the community, but one must also be careful to not get carried away by herd mentality". While I was searching for the words to describe the book, I have found the perfect description in Chapter 12 the book itself:

- - - - - - - - - - - - -
Heuristics like Occam's razor ... sound sexy, but they are hard to apply.... An admonition like "The more complex you make the model the worse the forecast gets" is equivalent to saying "Never add too much salt to the recipe".... If you want to get good at forecasting, you'll need to immerse yourself in the craft and trust your own taste-buds.
- - - - - - - - - - - - -

Had this quote been from the introduction, and had the book given any insight into how to get beyond the platitudes, it would be the book I hoped to read. However, the quote is from the penultimate chapter, and there is no further insight inside this book.

P.S. I first posted this review at Goodreads, and any updates will happen there and not here. Amazon has destroyed all the formatting and the hyperlink in this review, so the version at Goodreads is slightly better already.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


65 of 81 people found the following review helpful
5.0 out of 5 stars Nate Silver wins election, November 7, 2012
Verified Purchase(What's this?)
This would be a great book anytime but it is a must read following the election. Why were so many pundits surprised by Obama's victory? It's not rocket science if you know how to separate the signal from the noise. Unfortunately the pundits are frequently the source of the noise. It will be hard to watch the Sunday morning news programs after reading this book. No wonder the pundits hate Nate Silver.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


46 of 57 people found the following review helpful
2.0 out of 5 stars Nate fails Intro to Weather and Climate, November 22, 2012
I'm a member of SABR, a fan of Silver's political blog, and as an atmospheric science professor I teach seminars on forecasting (weather forecasting and also an interdisciplinary seminar in prediction). I've won awards in a national weather forecasting contest, too. I thought this book would be the long-awaited grand unifier of the field of prediction. Instead, any time that Silver turns from his areas of expertise toward science, he faceplants.

Chapter 4: Nate thinks the U.S. weather forecast models are run on computers in Boulder, CO--completely wrong, total confusion of a research lab with the operational forecasting center in Maryland. He doesn't understand the complex interplay of models and data in weather forecasting, even though the previous chapter on baseball scouting is a perfect setup for it. He misdescribes what a nonlinear equation is. He misdescribes Ed Lorenz's famous chaos theory experiments. By the end of Ch. 4, he can't even spell "television" correctly. While he is complimentary of weather forecasters, he misses numerous connections with earlier chapters and really doesn't seem to understand the subject matter. (At least he doesn't think weather forecasting = Al Roker.)

But this is considerably better than his chapter on climate prediction (Ch. 12), in which he completely, utterly botches the definition of the greenhouse effect--he thinks it has to do with reflected solar radiation. At that moment, he loses all credibility... it's as if he were a scientist discussing sabermetrics in the Baseball Research Journal and referred to a baseball as "the pigskin." Total fail. (He cites a couple of URLs in this passage, including lecture notes from a Columbia/Barnard course I used to teach. The quickie-Wiki approach to becoming an 'expert' in a field. The URLs sound good, but clearly Silver learned zero about the greenhouse effect from them--zero.) Then Silver sets up a false comparison between a discredited Heartland Institute forecaster and the worldwide efforts of the IPCC... fail. He skims the whole world of climate modeling. By chapter's end, he basically comes off as a college freshman out of his depth, writing a term paper the morning it's due. He'd know more about climate forecasting if he read Ch. 16 of my college-level intro meteorology textbook, but apparently there was no time for anything that pedantic.

Silver's Acknowledgments seem to reveal the problem: his research assistant seems to have been mostly responsible for the science parts of the book. In retrospect, it's not hard to tell (from the depth of thinking and analysis, from the lack of proofreading, etc.) that Silver didn't care much about the science chapters in his book--a couple hours with a couple experts, some URLs provided by the researcher, that's plenty for him. If Nate were in my freshman Intro to Weather and Climate class, he'd miss a lot of questions on the final exam.

I like a lot of Silver's big-picture perspectives on forecasting, and his discussion of Bayesian statistics is illuminating, but his lack of follow-through in the scientific fields where forecasting has been explored most successfully has seriously undermined his book. Somebody tell the New York Times that "The Signal and the Noise" is *not* one of the momentous books of the decade. Instead, it's yet another example of a book that grew out of a blog but needed to stay in the oven a while longer. Hey, Penguin Press, don't publishers hire expert content reviewers (not to mention copy editors) anymore?
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


152 of 199 people found the following review helpful
3.0 out of 5 stars Lively, but gets several things wrong, October 17, 2012
By 
Paul J. Papanek "latoxdoc" (Los Angeles, CA United States) - See all my reviews
(REAL NAME)   
Mr. Silver's book has some terrific yarns, which illustrate his insider's passion for baseball, chess, poker, the stock market, and more. Overall the writing here is very lively, and the book is entertaining and wise in many ways. But there are several problems, I think.

Let me start with the dull subject of statistics. Mr. Silver explains the basics nicely, including the distinctions between accuracy, precision, false positives and negatives, Bayesian logic, and predictions, with lovely examples that deepened my own understanding of these old concepts. (As a public health guy myself, I often forget that these ideas, which get to be second nature for statisticians and epidemiologists like me, are new for many folks, and can be counter-intuitive).

The chapters on baseball, chess, and poker are great fun, and serve to illustrate these statistical principles admirably.

But then there are some important problems further along.

First, I was surprised by Silver's quirky use of the parable of the fox and the hedgehog. (The parable, frankly, gets threadbare by the end of its chapter.) Most writers who invoke this parable end up disparaging the fox and admiring the hedgehog, rather than the reverse as Silver does. Why? Because -- in the usual telling of the parable the fox is clever, but flighty and ultimately unsuccessful, whereas the plodding old hedgehog, who knows only one true thing (to roll into a ball for protection), applies that one thing successfully. And so, the parable is usually seen as ironic meta-wisdom, with a moral lesson nearly opposite from the one Silver draws. Still, of course, new authors can use old stories for new purposes.

In four other areas, however I had greater difficulty with the discussion:

1) I disliked his discussion of the causes and course of the current financial crisis, where I believe Silver gets a number of basic facts about the economy and the course of unemployment flat-out wrong, and certainly adopts an economic viewpoint that many fine economists would disagree with.

2) His discussion of America's campaign for influenza immunization is simply dreadful, and is, frankly, insulting to the terrific public health professionals who wrestled with the exact same questions Silver raises, but at much greater depth. I found it disgraceful to read Silver's simplistic Monday-morning quarterbacking of these difficult public policy decisions, as if somehow history would have turned out so much better, if only America's poor misguided public health pros had been as smart as Nate. Oh, please.

3) The discussion of global climate change was similarly very unsatisfying. Once again, the tone in this comes across as condescending - what a shame that all of these well intentioned but simplistic climate scientists at IPCC and elsewhere just didn't appreciate Nate's deep insights into predictions. (Yeah, right.)

4) The discussion about former Defense Secretary Rumsfeld's views on defense uncertainties is lively and interesting, but it also ignores an important part of the historical record. Let's be very clear, Mr Silver: there were NO weapons of mass destruction in Iraq, and the evidence is very strong that the Bush administration lied America into that war. Your glossing over of those facts with two or three vague paragraphs about uncertainty in the intelligence community just don't cut it. Uncertainty among public officials is one thing; frank dishonesty is another.

I thought a long time about why his chapters on global climate change, America's response to terrorism, and Wall Street transactions seemed so far off the rails, when the rest of the book is quite insightful.

Here, I think, is the logical flaw in these less successful chapters: In fact, some people lie shamelessly. Throughout most of the book, Silver assumes that competing prognosticators will generally be governed by a basic sense of honesty and good will. (Yes, I understand that there are prognosticators whose purpose is publicity, or controversy for its own sake, like the McLaughlin Group which gets a gentle skewering from Silver.) But even in these divergent cases, we assume that the non-linear forces that move public opinion are driven by basic honesty and truth, even if belatedly.

But what happens when this presupposition of basic honesty in the participants is not met? What if some of the participants are lying actively? Do the same rules apply? Well, no. And that's precisely what I would argue has happened in the two spheres of global climate change and financial transactions, where players entered the arena who were fundamentally dishonest. (Readers who don't already agree that Fox News and the Wall Street Journal routinely lie for political or financial gain should perhaps stop reading right now.) But indeed, there are such players who lie. Not that I would see all climate "deniers" as other than upright and honest seekers, but plenty are provably not.

So, for the future, I predict we'll need a new chapter in another book, which I hope Silver will write: how does blatant dishonesty alter the landscape, and where do prevaricators fit into this otherwise great framework?

On balance, I'm glad I read the book, but I hope readers will make their way through it carefully. Finally, let me put in a plug for Mr. Silver's unbelievably great blog about political forecasting, in the New York Times: FiveThirtyEight.com. It is wonderful.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


7 of 7 people found the following review helpful
3.0 out of 5 stars A very entertaining book, January 12, 2013
Nate Silver became famous due to his innovative use of statistics in baseball followed, by correctly predicting the results of 49 out of 50 states in the 2008 election (50 out of 50 in 2012). In 2008 Silver launched his website FiveThirtyEight.com. In 2009 he was named one of The World's 100 Most Influential People by Time. In 2012 FiveThirtyEight.com won an award as the Best Political Blog from the International Academy of Digital Arts. Amazon.com named The Signal and the Noise the best non-fiction book of 2012.

The book is divided into four parts, each consisting of 3-4 chapters. The first part is about failures and successes of historic predictions (Silver presents his baseball predictions). The second part treats the problems of making predictions of dynamic systems like the weather. In the final parts Silver presents his statistical tool, the Bayes theorem, which he then uses to improve prediction skills (this theorem is also used by Daniel Kahneman in his book Thinking Fast and Slow, i.e. this is something we all should learn more about...).

In the third part of the book Silver applies this theorem to various examples, like sports betting and his own experience as a successful poker player. In the final part he uses Bayes on such difficult problems as terrorism, financial markets and global warming. When it comes to the latter Silver claims that there is no clear evidence of global warming. It's not possible to predict higher temperatures with certainty. Temperatures have been flat for a decade, quite the opposite of previous predictions. He is worried that neither side in the debate looks at facts and data, but instead selects noise that supports previous views. In the beautifully written introduction the dramatic increase in data, and therefore also noise, is presented as a problem just because it's easier for followers to find noise to support their views, which could be one reason why political partisanship has been increasing rapidly.

Mr Silver has written a very entertaining book. He takes on the numerous problems with statistics and shows how to find the truth (signal) among the data (noise). My main critique of the book is that the author has few solutions. The main conclusion is that we should be less certain about our views and predictions. In his view many experts who are seen in media tend to exaggerate, oversimplify and to be careless with facts. The reason being that in order to get airtime and attention you need to say something newsworthy that can make a headline, not necessarily what is relevant. One of the few exceptions being Hans Rosling who with his long term graphs has managed to explain more things than most experts - and get attention.

Regarding investing in stocks, Silver really doesn't have anything new to add, but he doesn't view the market as efficient. Rather his tentative conclusion is that the market is efficient 90% of the time. The main problem is that it's difficult to identify the interesting 10% (surprise...). Unfortunately Silver leaves it at that. The book however is easy to read and if you are interested in baseball, poker and the climate this is a book for you. If you have less of an interest in those subjects and more into investing, then there are better books. I highly recommend books written by people from the financial industry such as Maboussin, Taleb, and Montier.

This is probably not the last we have heard from the very creative Nate Silver. Since he is born 1978 he has plenty of time to find more signals in the noise that we all can learn from. I will definitely read his next book.

This is a review by investingbythebooks.com
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


19 of 23 people found the following review helpful
4.0 out of 5 stars Mostly good stuff, but a little disappointing, November 8, 2012
Verified Purchase(What's this?)
I had high hopes for this book. A book on forecasting by someone who has actually been successful at it-what could be better than that.

===The Good Stuff===

* Silver is a fairly honest writer. He is able to describe his previous forecasts, the methodology he used, and is frank with himself and the reader about what failed and what worked.

* Unlike some other books on this subject, Silver comes across as actually understanding the theory behind probability, and knows how to apply it to everyday problems.

* The material is chosen from a variety of topics, with different constraints and limitations. Chess, which is relatively deterministic but has a large number of permutations is very different that weather, which follows a few simple laws but requires intensive calculation to forecast. Silver explains how both of these create different challenges, and techniques for overcoming those problems.

* He avoids the usual "bag of red and black ping-pong ball" nonsense that usually clutters up books on this subject, and his discussion of Bayesian probability analysis is first-rate.

===The Not-So-Good Stuff===

* I found the book a little tough to read. Silver writes well enough, but the material is presented in a much drier and more formal manner than other books such as Freakonomics. This is my major issue with the book. It is not a "mass market, fun to read" book, but neither is it a rigorous treatment of a mathematical subject. Rather it sort of languishes in a no-mans-land between the two. And for those of us who at least think we understand statistics, some of the passages in the book are frustrating as you try to decode what Silver is really talking about.

* Silver has a bad habit of interjecting his own opinions and thoughts into the discussion. For example, his discussion of economic forecasting gets mired down in his own opinions on government spending levels and priorities. It takes away from the objectivity, and I know Silver knows better.

===Conclusion===

Even though it took me over a week to read this book, (a very long time for me), I enjoyed most of it. I did learn a few things about how forecasts work, and how to spot the difficulties in forecasting any given event. However it is more of a high-level look, and you will not learn much about how to actually forecast anything from this book.

I would have preferred the book to either be more entertaining (Moneyball), or more "textbooky" rather than trying to be a little of both. In some ways, I think I would have enjoyed it more if I knew less about the math of statistics. Still, if you are at all interested in how complicated processes like weather, chess and national economies are forecast, it is well worth a read.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


19 of 23 people found the following review helpful
5.0 out of 5 stars A wonderful book, October 27, 2012
Verified Purchase(What's this?)
This is a wonderful book. This is another book I believe should be required reading for everyone. The author weaves a story about prediction/forecasting and its limitations with a somewhat autobiographical journey which provides detailed explorations of politics, economics, sport (baseball), weather, earthquakes, gambling (poker), climate change and more.

The writing style is engaging, forthright, humorous as well as instructive. The book covers the limitations of models predictive power and how deeply human the endeavour of predicting and forecasting is. It requires both deep understanding as well as statistical modelling. It is an iterative process and needs to be open and driven by pursuit of truth.

The insights from Nobel Laureate Daniel Kahneman with respect to limitations of human reason (see Thinking Fast and Slow), the problems of assumptions (linearity for non-linear phenomena, independence in highly dependent environments, power law distributions) and a number of forms of biases including human propensity to overconfidence, distortion of risks and closed attitude (attachment to pre-conceived notions) are discussed. The book is not a dry technical exploration but a clear entertaining exploration. The graphics used powerfully reinforce the narrative.

There is overlap with the themes of Black Swan. I must admit that I prefer Nate Silver's exploration. I found the story telling more enjoyable, the arguments clearer and more convincing and the witticisms more amusing. I did not know anything about American Baseball but enjoyed the author's passion. The perspective on Moneyball provided an insight into this complex world that was better than the somewhat simplistic movie version (I have not read the book). Similarly, I have not played poker but the chapter devoted to this was interesting both within the context of forecasting as well as an object lesson for the important theme of the deeply human endeavour of trying to understand the world and its uncertainty.

I am inspired after reading this book to understand more about modelling, despite an emphasis on its pitfalls. If nothing else, I hope I am more analytical and open to information presented to me and more insightful and reflective enough to learn from my failures as well as more realistically appraise my apparent successes.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No


‹ Previous | 1 283 | Next ›
Most Helpful First | Newest First

Details

Search these reviews only
Rate and Discover Movies
Send us feedback How can we make Amazon Customer Reviews better for you? Let us know here.