Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime
Try Prime
and start saving today with fast, free delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Streaming of thousands of movies and TV shows with limited ads on Prime Video.
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
$11.99$11.99
FREE delivery: Wednesday, Feb 14 on orders over $35.00 shipped by Amazon.
Ships from: Amazon.com Sold by: Amazon.com
Buy used: $9.99
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Follow the authors
OK
Algorithms to Live By: The Computer Science of Human Decisions Paperback – April 4, 2017
Explore your book, then jump right back to where you left off with Page Flip.
View high quality images that let you zoom in to take a closer look.
Enjoy features only possible in digital – start reading right away, carry your library with you, adjust the font, create shareable notes and highlights, and more.
Discover additional details about the events, people, and places in your book, with Wikipedia integration.
Purchase options and add-ons
An exploration of how computer algorithms can be applied to our everyday lives to solve common decision-making problems and illuminate the workings of the human mind.
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of the new and familiar is the most fulfilling? These may seem like uniquely human quandaries, but they are not. Computers, like us, confront limited space and time, so computer scientists have been grappling with similar problems for decades. And the solutions they’ve found have much to teach us.
In a dazzlingly interdisciplinary work, Brian Christian and Tom Griffiths show how algorithms developed for computers also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one’s inbox to peering into the future, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
Review
“A remarkable book... A solid, research-based book that’s applicable to real life. The algorithms the authors discuss are, in fact, more applicable to real-life problems than I’d have ever predicted.... It’s well worth the time to find a copy of Algorithms to Live By and dig deeper.”
―Forbes
“By the end of the book, I was convinced. Not because I endorse the idea of living like some hyper-rational Vulcan, but because computing algorithms could be a surprisingly useful way to embrace the messy compromises of real, non-Vulcan life.”
―The Guardian (UK)
“I absolutely reveled in this book... It's the perfect antidote to the argument you often hear from young math students: ‘What's the point? I'll never use this in real life!’... The whole business, whether it's the relative simplicity of the 37% rule or the mind-twisting possibilities of game theory, is both potentially practical and highly enjoyable as presented here. Recommended.”
―Popular Science (UK)
“An entertaining, intelligently presented book... Craftily programmed to build from one good idea to the next... The value of being aware of algorithmic thinking―of the thornier details of ‘human algorithm design,’ as Christian and Griffiths put it―is not just better problem solving, but also greater insight into the human mind. And who doesn’t want to know how we tick?”
―Kirkus Reviews
“Compelling and entertaining, Algorithms to Live By is packed with practical advice about how to use time, space, and effort more efficiently. And it’s a fascinating exploration of the workings of computer science and the human mind. Whether you want to optimize your to-do list, organize your closet, or understand human memory, this is a great read.”
―Charles Duhigg, author of The Power of Habit
“In this remarkably lucid, fascinating, and compulsively readable book, Christian and Griffiths show how much we can learn from computers. We’ve all heard about the power of algorithms―but Algorithms to Live Byactually explains, brilliantly, how they work, and how we can take advantage of them to make better decisions in our own lives.”
―Alison Gopnik, coauthor of The Scientist in the Crib
“I’ve been waiting for a book to come along that merges computational models with human psychology―and Christian and Griffiths have succeeded beyond all expectations. This is a wonderful book, written so that anyone can understand the computer science that runs our world―and more importantly, what it means to our lives.”
―David Eagleman, author of Incognito: The Secret Lives of the Brain
About the Author
Tom Griffiths is a professor of psychology and cognitive science at UC Berkeley, where he directs the Computational Cognitive Science Lab. He has received widespread recognition for his scientific work, including awards from the American Psychological Association and the Sloan Foundation.
- Print length368 pages
- LanguageEnglish
- PublisherHolt Paperbacks
- Publication dateApril 4, 2017
- Dimensions6.25 x 0.81 x 9.18 inches
- ISBN-101250118360
- ISBN-13978-1250118363
Frequently bought together

Similar items that may ship from close to you
Exploration in itself has value, since trying new things increases our chances of finding the best. So taking the future into account, rather than focusing just on the present, drives us toward novelty.Highlighted by 3,053 Kindle readers
“To try and fail is at least to learn; to fail to try is to suffer the inestimable loss of what might have been.”Highlighted by 2,734 Kindle readers
This is the first and most fundamental insight of sorting theory. Scale hurts.Highlighted by 1,936 Kindle readers
Product details
- Publisher : Holt Paperbacks; Reprint edition (April 4, 2017)
- Language : English
- Paperback : 368 pages
- ISBN-10 : 1250118360
- ISBN-13 : 978-1250118363
- Item Weight : 13.8 ounces
- Dimensions : 6.25 x 0.81 x 9.18 inches
- Best Sellers Rank: #12,989 in Books (See Top 100 in Books)
- #25 in Medical Cognitive Psychology
- #52 in Cognitive Psychology (Books)
- #55 in Decision-Making & Problem Solving
- Customer Reviews:
Important information
To report an issue with this product or seller, click here.
About the authors

Brian Christian is the author of the acclaimed bestsellers "The Most Human Human," a New York Times editors’ choice and a New Yorker favorite book of the year, and "Algorithms to Live By" (with Tom Griffiths), a #1 Audible bestseller, Amazon best science book of the year and MIT Technology Review best book of the year.
Christian’s writing has appeared in The New Yorker, The Atlantic, Wired, and The Wall Street Journal, as well as peer-reviewed journals such as Cognitive Science. He has been featured on The Daily Show and Radiolab, and has lectured at Google, Facebook, Microsoft, the Santa Fe Institute, and the London School of Economics. His work has won several awards, including publication in Best American Science & Nature Writing, and has been translated into nineteen languages.
Christian holds degrees in computer science, philosophy, and poetry from Brown University and the University of Washington. A Visiting Scholar at the University of California, Berkeley, he lives in San Francisco.

Tom Griffiths is a professor of psychology and computer science at Princeton, where he directs the Computational Cognitive Science Lab. He has published scientific papers on topics ranging from cognitive psychology to cultural evolution, and has received awards from the National Academy of Sciences, the Sloan Foundation, the American Psychological Association, and the Psychonomic Society, among others. He lives in Princeton, New Jersey.
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on AmazonReviews with images
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
Optimal stopping - how many people out of 100 possible candidates should one interview for a given position (including that of spouse)? 37%, Why? Read the book.
The Explore/Exploit dichotomy - Should one ask the question "What's new" or "What's best"? Your answer may depend on your time horizon. As your time horizon shortens, "what's best" may be the better question. The book explains why. The book also looks at the multi-armed bandit as an example of the explore/exploit dichotomy. What's a multi-armed bandit? Think of the one-armed bandit in Vegas and multiply its arms. Mathematicians do so. Their conclusions may be useful. The trials of music critics also fit into the explore/exploit dichotomy. The authors explain why music critics find exploration a chore.
Sorting - libraries are the metaphor for computer sorting. Human memory also requires sorting. Maybe the decline in memory as humans age may be due to the amount of information through which it must sort and not due to declining faculties. A five-year old has a lot less information to go through than a seventy-five year old. The authors consider sorting techniques with email, Yelp, and other common uses. There is much useful information.
Caching - when is forgetting necessary? According to the authors, the first computer cache was developed for a supercomputer in 1962 ub Manchester, England. I wonder how "super" that computer was? Caching allows some information to be stored for repetitive use and uncached information to be kept in the background.
Scheduling - many scheduling problems have "intractable" solutions. The authors suggest different solutions based on algorithms such as precedence constraints, earliest due date (one I personally use frequently, which I couple with a personal likely to get me in the most trouble the quickest test) and shortest processing time. The scheduling problem has received substantial effort from mathematicians.
Bayes's Rule - how to use statistical inference to make useful predictions. Couple a well-defined problem with a range of prior outcomes and one can make accurate guesses. A .300 hitter comes to the plate against the same pitcher who has already struck the batter out twice and it may be a fair guess that the hitter is due for a hit.
Overfitting - don't overthink and over complicate a problem. The authors advise against practicing the idolatry of data. A more complex theorem may well lead to less accuracy rather than more. On the level of incentive compensation, the authors quote Steve Jobs for being careful that you include only those elements in your incentive package that matter; you will get what you measure.
Relaxatrion - the perfect is the enemy of the good. To get any useful answer from your mathematical model, it may be necessary to relax some of your constraints (insisting that your model never allow the traveling salesman to re-enter the same city twice may preclude any answer at all in a time period of less than the remaining life of the universe).
Randomness - mathematicians sometimes realize that the best answer comes from sampling and not from strict calculations. This may explain why I get so many survey requests. Algorithms for prime numbers use this technique. And, apparently, thousands of years ago the Greeks were already looking for prime numbers.
Networking - here the authors examine the "Byzantine generals" problem, which plays a part in explaining how computers communicate with each other.
Game Theory - Alan Turing investigated the "halting problem" in the 1930s. What if you give your computer a problem and it just keeps going? Rock, paper, scissors is a game with which most are familiar. It, too, is part of game theory. When a game seems to have no satisfactory answer, maybe it's time to change the game. What happens when you have an "information cascade"?
If any ot this interests you, I believe that you will enjoy the book. I recommend it highly.
As aforementioned, the book explores how people use algorithms in their day-to-day to accomplish tasks. They focus on several elements: explore/exploit, or when it is best to continue to look for something better or make a choice from what one already knows; sorting and tradeoffs; and scheduling being among the subjects of focus. What makes these sections interesting is that they often talk about tradeoffs that one would seem counterintuitive. An example of this is in the scheduling section. The authors mention how the placement of a task on a schedule may be influenced by how much one knows about the task: by its duration or difficulty. This may increase the difficulty of scheduling if one were to know every detail of every task that must be done for the day. They also mention that while some may be tempted to schedule tasks based on how easy they are, this may also come with downsides. Especially if one decides to prioritize harder tasks before easier ones, only to realize that its completion requires completing an easier task. They give an example of a NASA Mars rover being frozen due to this fact. The rover was programmed to prioritize high priority tasks first in its queue over low priority tasks. However, one of the low-priority tasks kept being pulled from the bottom of the queue to the top. This caused the rover to freeze. Thus, even well-thought-out systems can lead to problems.
The above example with NASA shows another aspect of the book I like; the use of real world examples. The authors tell stories involving real world mathematicians and scientists struggling with these issues in their personal lives. This helps make the subjects feel personal and applicable to one's own life. In fact, I would argue that the only issue with the book is that these anecdotes seem to be an afterthought. This is due to the fact that the anecdotes become more prominent as the book progresses towards the end. Thus, the first few chapters can be somewhat dry in its presentation which may turn off a lay reader. Furthermore, the use of hypothetical scenarios in the earlier chapters feel like a pale imitation of the personal anecdotes of later chapters.
All in all, this book was fairly enjoyable. While having some rough patches, the authors did try and succeed in making an accessible book.
















