Buy new:
-40% $44.66$44.66
$4.58 delivery December 11 - 13
Ships from: EchoPointBooks Sold by: EchoPointBooks
Save with Used - Good
$36.00$36.00
$3.99 delivery December 16 - 20
Ships from: HPB-Red Sold by: HPB-Red
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Follow the authors
OK
The Art of Multiprocessor Programming 2nd Edition
Purchase options and add-ons
- Features new exercises developed for instructors using the text, with more algorithms, new examples, and other updates throughout the book
- Presents the fundamentals of programming multiple threads for accessing shared memory
- Explores mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques, from simple locks to transactional memory systems
- ISBN-109780124159501
- ISBN-13978-0124159501
- Edition2nd
- PublisherMorgan Kaufmann
- Publication dateOctober 27, 2020
- LanguageEnglish
- Dimensions7.8 x 1 x 9.8 inches
- Print length576 pages
Frequently bought together

Customers who viewed this item also viewed
Editorial Reviews
Review
"The book is largely self-contained, has countless examples, and focuses on what really matters. As such, it is very well suited for both a teaching environment and for practitioners looking for an opportunity to learn about this topic...The book is written in a way that makes multiprocessor programming accessible. This updated version will further confirm its status as a classic." --ComputingReviews.com, 2013
Review
About the Author
Nir Shavit received a B.A. and M.Sc. from the Technion and a Ph.D. from the Hebrew University, all in Computer Science. From 1999 to 2011 he served as a member of technical staff at Sun Labs and Oracle Labs. He shared the 2004 Gödel Prize with Maurice Herlihy, with whom he also shared the 2012 Edsger W. Dijkstra Prize in Distributed Computing. He is a Professor in the Electrical Engineering and Computer Science Department at M.I.T. and the Computer Science Department at Tel-Aviv University.
Victor Luchangco is a Senior Algorithms Researcher at Algorand in Cambridge, MA, USA.
Professor Spear's research interests are broadly in concurrency, programming languages, and computer architecture. His goal is to make it easier for programmers to write correct, scalable applications.
Product details
- ASIN : 0124159508
- Publisher : Morgan Kaufmann; 2nd edition (October 27, 2020)
- Language : English
- Paperback : 576 pages
- ISBN-10 : 9780124159501
- ISBN-13 : 978-0124159501
- Item Weight : 2.56 pounds
- Dimensions : 7.8 x 1 x 9.8 inches
- Best Sellers Rank: #785,731 in Books (See Top 100 in Books)
- #137 in Software Design & Engineering
- #806 in Microsoft Programming (Books)
- #849 in Software Development (Books)
- Customer Reviews:
About the authors

Discover more of the author’s books, see similar authors, read book recommendations and more.

Discover more of the author’s books, see similar authors, read book recommendations and more.
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on AmazonReviews with images
The Kindle version is hard to read
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
Practitioners that are already well versed in parallel programming can jump directly to Chapter 7, however, I would suggest at least skimming Chapters 2, 3 and 4. Even those programmers who understand shared memory and locking may be shocked at how relaxed memory models or compiler optimizations can reorder operations causing innocent looking code to break.
----------------------------------------
Chapter 1 - Introduction
Why is this book called "The Art of Multiprocessor Programming" and not "The Art of Parallel Programming?" It is not by accident. There is a directed effort to explain parallel programming concepts as they relate to multi-core (or many-core) architectures. In particular, shared-memory multiprocessors have specific implementation details, such as cache coherence policies, that directly affect parallel software run on such architectures. The introduction gives a brief overview of the direction of the text: principles and practice.
----------------------------------------
Part 1 - Principles
Chapter 2 - Mutual Exclusion
Mutual exclusion is a key concept to multi-threaded programming, and this chapter is rightly placed at the beginning of the text. This chapter presents some of the foundational concepts in parallel computing, such as, understanding time related to operation interleavings, pessimistic critical sections, forward progress, deadlocks and fairness. In addition, some of the classic algorithms are presented here, such as Lamport's Ticket Locking and Peterson's 2-Threaded Lock.
Chapter 3 - Concurrent Objects
This chapter starts off simple, but gets complex fast. While experts will understand and acknowledge the importance of this chapter, less experienced programmers will find it very challenging to understand and may be turned off: don't give up!
My suggestion to non-experts is to focus on understanding two concepts of this chapter: hardware sequential consistency (3.4) and software linearizibility (3.5). Once you understand both concepts, skim all other sections except section 3.8.
Java programmers may want to pay special attention to the Java Memory Model section (3.8) and ill-formed unsynchronized code. General programmers will also be interested in this section as it is important to understand how the hardware's memory consistency model, the programming language's memory model and the compiler's operation reordering optimizations may interfere with what "looks like" correct code.
Do not be discouraged by the difficult of this chapter. It is one of the most difficult chapter in the text. Get through it and keep reading.
Chapter 4 - Foundations of Shared Memory
This chapter concentrates on understanding shared memory, the cornerstone of all multi-threaded applications. It explains how to implement shared memory that behaves "correctly" without using mutual exclusion. The different types of memory that are discussed are single-reader single-writer (SRSW), multiple-reader single-writer (MRSW) and multiple-reader multiple-writer (MRMW). This is an important chapter for non-experts to think about, as it explains how operation interleavings are not as discrete as we pretend they are and how shared memory should behave in all possible cases.
Chapter 5 - The Relative Power of Primitive Synchronization Operations
This chapter explains the varying strength of different wait-free synchronization primitives. Consensus numbers will undoubtedly confuse novice parallel programmers. In short, the higher the consensus number the better. A high consensus number, say N, for a synchronization primitive means that synchronization primitive can "correctly" solve the consensus problem for N concurrently executing threads. For example, critical sections have an infinite consensus number (e.g. support an infinite number of concurrent threads). Atomic registers have a consensus number of 1, they support only 1 thread's execution that is guaranteed to consistently and validly solve the consensus problem.
The most important point of this chapter (in my opinion) is that compare-and-swap (CAS), or compare-and-set, has an infinite consensus number (section 5.8). This is why modern instruction set architectures (ISAs) all provide CAS: it is critical to supporting an unlimited number of concurrently executing threads. Realizing the importance of CAS is vital for advanced parallel programmers who want to implement nonblocking algorithms.
Chapter 6 - Universality of Consensus
This chapter explains how to build universal consensus for your own concurrent objects. While it will be an interesting chapter for experts, novices may want to skip it.
----------------------------------------
Part II - Practice
Chapter 7 - Spinlocks and Contention
This chapter explains the important differences between different types of locking. It explains how to implement locks using assembly level operations (test-and-set and test-and-test-and-set), how to reduce bus contention using backoff, how to reduce cache pressure by having threads spin on their local cache memory and how to manage an unknown number of threads using locks.
After reading this chapter, most readers should have an appreciation for the hardware complexity of implementing something as simple as a lock. Some programmers may argue that they should not need to know how hardware behaves. While I would like to agree, the unfortunate state of multi-core programming currently requires a basic understanding of memory consistency models and cache behaviors. Herlihy and Shavit note this and make an effort to address it in a "just what you need to know" fashion, as done in this chapter.
Chapter 8 - Monitors and Blocking Synchronization
This chapter explains monitors, conditions, the differences between readers and writers, and reentrant locks. Java programmers will be especially interested in understanding monitors, while all OO programmers should have an appreciation of synchronizing an entire class. Moreover, the section on reentrant locks is simple but important to preventing deadlocks.
----------------------------------------
Unofficially, Chapters 9 - 11 focus on achieving parallelism in algorithms that have sequential bottlenecks and are therefore inherently sequential.
----------------------------------------
Chapter 9 - Linked Lists: The Role of Locking
The chapter explains how to implement ordered linked lists (e.g., IntSets or just sets) in a variety of different ways. The chapter starts out with the most basic implementation and then begins to increase performance by relaxing the strictness of the required thread synchronization.
Chapter 10 - Concurrent Queues and the ABA Problem
The chapter explains how to implement pools, a collection of unordered or ordered items. The chapter then explains the ways to implement pools as different types of queues, containers with first-in-first-out behavior. The chapter also explains a classic parallel problem known as ABA, where thread1 observes x == A, thread2 does x=B and then x=A and thread1 then observes x == A. The ABA problem is a subtle, but important problem.
Chapter 11 - Concurrent Stacks and Elimination
This chapter starts where the last chapter left off; it explains how to implement concurrent stacks, containers with first-in-last-out behavior. The chapter also explains a neat cancellation problem called elimination. Elimination is useful for avoiding overflows, underflows and other types of bounded problems.
Chapter 12 - Counting, Sorting and Distributed Coordination
This chapter explains how to take problems that seem to be inherently sequential and make them parallel. The chapter also explains both combining and diffracting trees, both of which are very interesting ways to make sequential problems parallel. This chapter is one of the more complex chapters of the text. Some readers may want to skim it.
----------------------------------------
Unofficially, Chapters 13 - 15 focus on achieving parallelism in algorithms that are inherently parallel. Readers will enjoy seeing how easy it is to extract parallelism in these naturally parallel algorithms.
----------------------------------------
Chapter 13 - Concurrent Hashing and Natural Parallelism
This chapter explains how to build parallel hash tables, with both open and closed addressing. First, the authors explain how to implement hash tables using coarse-grained locks, then with fine-grained locks, then with no locks at all. The chapter also explains how to deal with open-addressed hash tables which are particularly challenging.
Chapter 14 - Skiplists and Balanced Search
Most non-experts that make it this far in the text will be greatly rewarded by this chapter. Chapter 14 explains skiplists, an intriguing way to implement a container that has logarithmic search time and that is inherently parallel. Unlike red-black trees or balanced binary trees that yield logarithmic search time complexity, skiplists do not need to be rebalanced. Skiplists do not need to be rebalanced due to their unique algorithmic layering, making them inherently parallel. As such, skiplists have a notable benefit over their inherently sequential logarithmic search time counterparts.
This is a critically important chapter for practitioners hoping to exploit high parallelism while retaining logarithmic search time.
Chapter 15 - Priority Queues
This chapter explains how to implement priority queues, containers that are queues where each element has an identifiable level of importance. The authors demonstrate how to build priority queues with arrays, trees, heaps and skiplists.
Chapter 16 - Futures, Schedules and Work Distribution
This chapter presents some important aspects in understanding parallelism. In particular, the authors explain how to keep threads busy with work without causing the threads to become busy with "looking for work". The chapter also explains important ideas about the overhead of threads, stealing work, and sharing work. This chapter may cause some confusion to non-experts, but readers should try to understand at least the basic principles conveyed here as they are important to most general parallel programming problems.
Chapter 17 - Barriers
This chapter explains how to use barriers, a synchronization primitive that ensures threads move together through "gates" or "phases". Barriers are important in preventing threads from getting to far ahead or too far behind one another.
Chapter 18 - Transactional Memory
This chapter briefly describes a new parallel programming concept called transactional memory (TM). TM uses optimistic concurrency and greatly simplifies parallel programming. Herlihy and Shavit are responsible for HTM and STM, respectively.
The following ideas are touched on: HTM + cache coherence, composition, contention managers and transactional serialization. TM is currently receiving a lot of research attention and many researchers believe TM will soon become the new way to do parallel programming. Because of this, readers should pay particular attention to this chapter.
The remainder of the book is devoted to practical subjects. These chapters cover locks, a variety of data structures, work scheduling, and some miscellaneous topics. Java's java.util.concurrent package provides production-quality implementations of most of these data structures. The authors know this, and they use the data structures chapters to demonstrate generally applicable techniques while avoiding unnecessary implementation details. The work scheduling chapter is a sobering reminder of the difficulty inherent in fully exploiting highly parallel architectures. The authors show how to use recurrences to analyze the relative speedup an algorithm gains by running on P processors instead of a single processor. Combining this with the discussion of Ahmdal's Law earlier in the book we see that the essential math behind parallelism severely penalizes you for seemingly small sequential portions of your code. I also found the counting networks chapter fascinating, as I had never encountered that material before.
The book also provides appendices aimed at bringing inexperienced readers up to speed. That said, I wouldn't recommend this book for inexperienced programmers. The material is challenging. If you are looking for a gentler introduction to this subject, consider Java Concurrency in Practice. Each chapter ends with a note describing the history of the material and providing pointers to the bibliography. These demonstrate that the authors have been significant contributors to this field. I do agree with the review from Vyacheslav Imameyev - some of the code samples are wrong. I think they missed "volatile" keywords in several places. I don't see this as a cookbook, so I'm still giving the book five stars.
Highly parallel machines are here to stay. Programmers need to adapt to this or suffer competitive disadvantage. This is the book to read in order to meet that challenge.
Top reviews from other countries
翻訳版が出ているそうだが、数学的、論理的な部分をきちんと学ぶなら、英語版をお薦めしたい。
前半は数学の力を必要とするが、きちんと読むと世界が広がると思う。最初から通して読んで頂きたい。この本が教える知識を身につける人が増えて複数プロセッサプログラミングの裾野が広がることを期待する。







