US$31.01 con 34 porcentaje de ahorro
Precio recomendado: US$46.99
El Precio listado es el precio de venta sugerido de un nuevo producto tal como lo proporciona un fabricante, proveedor o vendedor. Excepto para los libros, Amazon mostrará un Precio listado si los clientes compraron el producto en Amazon o si otros minoristas lo ofrecieron al Precio listado o a un precio superior al menos en los últimos 90 días. Los precios listados pueden no reflejar necesariamente el precio de mercado actual del producto.
Más información
Devoluciones internacionales gratis
US$8.92 de cargos de envío e importación a Canadá Detalles

Detalles de envío y tarifa

Precio US$31.01
Envío de AmazonGlobal US$7.30
Cargos estimados de importación US$1.62
Total US$39.93

Entrega el jueves, 3 de octubre
Disponible
US$US$31.01 () Incluye las opciones seleccionadas. Incluye el pago mensual inicial y las opciones seleccionadas. Detalles
Precio
Subtotal
US$US$31.01
Subtotal
Desglose inicial del pago
Se muestran los gastos de envío, la fecha de entrega y el total del pedido (impuestos incluidos) al finalizar la compra
Enviado por
Amazon.com
Enviado por
Amazon.com
Vendido por
Amazon.com
Vendido por
Amazon.com
Devoluciones
Reintegro o reemplazo en 30 días
Reintegro o reemplazo en 30 días
Este artículo se puede devolver en su estado original para obtener un reintegro o reemplazo completo dentro de los 30 días posteriores a la recepción.
Devoluciones
Reintegro o reemplazo en 30 días
Este artículo se puede devolver en su estado original para obtener un reintegro o reemplazo completo dentro de los 30 días posteriores a la recepción.
Pago
Transacción segura
Tu transacción es segura
En Amazon, nos esforzamos por proteger tu seguridad y privacidad. Nuestro sistema de seguridad de pagos encripta tu información durante la transmisión de datos. No compartimos los datos de tu tarjeta de crédito con vendedores externos, ni vendemos tu información a terceros. Más información
Pago
Transacción segura
En Amazon, nos esforzamos por proteger tu seguridad y privacidad. Nuestro sistema de seguridad de pagos encripta tu información durante la transmisión de datos. No compartimos los datos de tu tarjeta de crédito con vendedores externos, ni vendemos tu información a terceros. Más información
Agregado a

Lo sentimos; hubo un problema.

Hubo un error al recuperar tus Listas de Deseos. Por favor inténtalo de nuevo.

Lo sentimos; hubo un problema.

Lista no disponible.
Imagen del logotipo de la aplicación Kindle

Descarga la app de Kindle gratis y comienza a leer libros Kindle al instante desde tu smartphone, tablet o computadora, sin necesidad de ningún dispositivo Kindle.

Lee al instante desde tu navegador con Kindle para la web.

Usando la cámara de tu celular escanea el siguiente código y descarga la aplicación Kindle.

Código QR para descargar la App Kindle

Seguir al autor

Ocurrió un error. Intenta realizar tu solicitud de nuevo más tarde.

Comet for Data Science: Enhance your ability to manage and optimize the life cycle of your data science project

4.7 4.7 de 5 estrellas 7 calificaciones

{"desktop_buybox_group_1":[{"displayPrice":"US$31.01","priceAmount":31.01,"currencySymbol":"US$","integerValue":"31","decimalSeparator":".","fractionalValue":"01","symbolPosition":"left","hasSpace":false,"showFractionalPartIfEmpty":true,"offerListingId":"8WVsDDdJa4ZKGIHnMC6gPufHS%2Bmadtc9s61Psy20Sdk4Bec2C3mK8hcTNaLpnjSHNtOmhlQuqJThPAVygqxMCC5M4YpBVKmpFafHxxiMosUyPPYR%2F0E1pgutpOXSz8hJ1%2BPPpima20bRE%2FFhJbnP3w%3D%3D","locale":"es-US","buyingOptionType":"NEW","aapiBuyingOptionIndex":0}]}

Opciones de compra y productos Add-on

Gain the key knowledge and skills required to manage data science projects using Comet


Key Features:

  • Discover techniques to build, monitor, and optimize your data science projects
  • Move from prototyping to production using Comet and DevOps tools
  • Get to grips with the Comet experimentation platform


Book Description:

This book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model.

The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available.

By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet.


What You Will Learn:

  • Prepare for your project with the right data
  • Understand the purposes of different machine learning algorithms
  • Get up and running with Comet to manage and monitor your pipelines
  • Understand how Comet works and how to get the most out of it
  • See how you can use Comet for machine learning
  • Discover how to integrate Comet with GitLab
  • Work with Comet for NLP, deep learning, and time series analysis


Who this book is for:

This book is for anyone who has programming experience, and wants to learn how to manage and optimize a complete data science lifecycle using Comet and other DevOps platforms. Although an understanding of basic data science concepts and programming concepts is needed, no prior knowledge of Comet and DevOps is required.

Opiniones editoriales

Críticas

“Managing data science projects is difficult―Complex pipelines are tricky to implement without error, can present problems when you try to share them with others, and are not usually built with reproducibility in mind. Approaches to management are far from cut-and-dried, in part due to projects being alive, meaning they must continually integrate new data and be re-evaluated.

Comet can help with all of this since it’s made to help manage experiments, evaluate models, and version data, all while making reproducibility and collaboration straightforward. Comet for Data Science, masterfully written by Angelica Lo Duca, provides a bottom-up approach to learning how to manage data science projects with Comet, and does so without assuming you have any prior experience with data science project management. Every aspect of project management is well-explained, so you’ll come away with the confidence to use Comet to manage your own practical data science projects right away.

This book is a welcome addition to my data science bookshelf.”

--

Matthew Mayo, Editor-in-Chief at KDnuggets

Biografía del autor

Angelica Lo Duca is a researcher at the Institute of Informatics and Telematics of the National Research Council, Italy. She is also an external professor of Data Journalism at the University of Pisa. Her research includes Data Science, Data Journalism, and Web Applications. She used to work on Network Security, Semantic Web, Linked Data and Blockchain. She has published more than 40 scientific papers at national and international conferences and journals, and participated in many international projects and events, including as a member of the Program Committee.

Detalles del producto

  • Editorial ‏ : ‎ Packt Publishing (26 Agosto 2022)
  • Idioma ‏ : ‎ Inglés
  • Tapa blanda ‏ : ‎ 402 páginas
  • ISBN-10 ‏ : ‎ 1801814430
  • ISBN-13 ‏ : ‎ 978-1801814430
  • Dimensiones ‏ : ‎ 9.25 x 7.52 x 0.83 pulgadas
  • Opiniones de clientes:
    4.7 4.7 de 5 estrellas 7 calificaciones

Sobre el autor

Sigue a los autores para recibir notificaciones de sus nuevas obras, así como recomendaciones mejoradas.
Angelica Lo Duca
Brief content visible, double tap to read full content.
Full content visible, double tap to read brief content.

Angelica Lo Duca is a researcher at the Institute of Informatics and Telematics of the National Research Council, Italy. She is also an external professor of Data Journalism at the University of Pisa. Her research interests include Data Science, Data Journalism, and Web Applications. She used to work on Network Security, Semantic Web, Linked Data, and Blockchain. She has published more than 40 scientific papers at national and international conferences and journals. She has participated in different national and international projects, and events. She has been a member of the Program Committee at different conferences. She is also part of the Editorial Team of the HighTech And Innovation Journal. She owns a personal blog, where she publishes articles on her research interests.

Lo Duca's personal blog is www.alod83.com and her Twitter account is @alod83

Opiniones de clientes

4.7 de 5 estrellas
7 calificaciones globales

Opiniones destacadas de los Estados Unidos

Calificado en Estados Unidos el 14 de septiembre de 2022
Super excited for this book!
Calificado en Estados Unidos el 14 de noviembre de 2022
Comet for data science provides a great platform for doing end to end ML project. It will also make it easy to collaborate with other developers on the same project. The good thing about the book is it’s use cases and covers it from the data to report.
Calificado en Estados Unidos el 20 de diciembre de 2022
A fantastic look at the Comet platform and how it can be used to streamline data science and machine learning pipelines. Dr. Lo Duca writes with a clear and thoughtful voice providing great examples and usecases. A must-read for all data scientists!
Calificado en Estados Unidos el 13 de septiembre de 2022
Angelica has done a wonderful job of showing how Comet’s Experiment Management tool can be incorporated into each step of the model development process, from data exploration, to model training, evaluation and deployment. She highlights the specific features of the Comet product that can be applied at each step, and provides detailed examples of how to use these features.

Her writing is accessible, and the tutorials are comprehensive and easy to follow. The best part of this book, is that code examples and datasets are provided for all the topics she covers!

I would recommend this book to any ML practitioner who is would like to learn how to structure their model development in a way that never lets them lose track of their work, and ensures that their efforts are always reproducible.
Calificado en Estados Unidos el 14 de octubre de 2022
Being self touched learner! I love the way of coding and dataset code examples. Her writing is accessible, and the tutorials are comprehensive and easy to follow. The best part of this book that I fall in love is that code examples and datasets are provided for all the topics she covers!

I would highly recommend this book to any ML beginners who love to learn how to structure their model development in a way that never lets them lose track of their work. Overall, book is highly worthy to explore for ML.
Calificado en Estados Unidos el 27 de septiembre de 2022
I like what I see in this book but if we are talking about the lifecycle, would like to see more focus on all of the phase gate activities including test and evaluation (T&E). Within AI and ML product development, there seems to be such a lack of published content on the T&E topic.

Opiniones más destacadas de otros países

Traducir todas las opiniones al Español
arnaldo morena
5.0 de 5 estrellas Un manuale per sfruttare al massimo Comet
Calificado en Italia el 31 de mayo de 2023
Questo libro fornisce concetti e casi d'uso pratici che possono essere utilizzati per creare, monitorare e ottimizzare rapidamente progetti di data science. Utilizzando Comet, si può gestire quasi ogni fase del processo di data science, dalla raccolta dei dati, alla preparazione fino alla creazione, distribuzione e monitoraggio di un modello di machine learning. Il progetto viene organizzato in ogni suo dettaglio partendo dai concetti di DevOps e estendendo la piattaforma GitLab DevOps trattando vari casi d'uso in machine learning, NLP, deep learning e analisi di serie temporali! Abbiamo avuto L'autrice ospite delle nostre interviste ed è stato veramente un piacere poter ascoltare live le risposte ai nostri quesiti