Enter your mobile number below and we'll send you a link to download the free Kindle App. Then you can start reading Kindle books on your smartphone, tablet, or computer - no Kindle device required.
Getting the download link through email is temporarily not available. Please check back later.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems) 2nd Edition

3.9 out of 5 stars 38 customer reviews
ISBN-13: 978-0120884070
ISBN-10: 0120884070
Why is ISBN important?
This bar-code number lets you verify that you're getting exactly the right version or edition of a book. The 13-digit and 10-digit formats both work.
Scan an ISBN with your phone
Use the Amazon App to scan ISBNs and compare prices.
Have one to sell? Sell on Amazon
Buy used
Condition: Used: Acceptable
Comment: Reading copy with moderate to excessive wear to covers and interior. Includes notes, writing, highlighting and overall wear. Has been previously handled but is still a great resource. Does not include Cd, codes, or accessories.
Access codes and supplements are not guaranteed with used items.
43 Used from $4.55
FREE Shipping on orders over $25.
More Buying Choices
13 New from $18.90 43 Used from $4.55 1 Collectible from $18.99

ITPro.TV Video Training
Take advantage of IT courses online anywhere, anytime with ITPro.TV. Learn more.
click to open popover

Editorial Reviews


“This book presents this new discipline in a very accessible form: both as a text to train the next generation of practitioners and researchers, and to inform lifelong learners like myself. Witten and Frank have a passion for simple and elegant solutions. They approach each topic with this mindset, grounding all concepts in concrete examples, and urging the reader to consider the simple techniques first, and then progress to the more sophisticated ones if the simple ones prove inadequate. If you have data that you want to analyze and understand, this book and the associated Weka toolkit are an excellent way to start.”
― From the foreword by Jim Gray, Microsoft Research

“It covers cutting-edge, data mining technology that forward-looking organizations use to successfully tackle problems that are complex, highly dimensional, chaotic, non-stationary (changing over time), or plagued by. The writing style is well-rounded and engaging without subjectivity, hyperbole, or ambiguity. I consider this book a classic already!”
― Dr. Tilmann Bruckhaus, StickyMinds.com

Book Description

Highly anticipated second edition of the highly-acclaimed reference on data mining and machine learning.

New York Times best sellers
Browse the New York Times best sellers in popular categories like Fiction, Nonfiction, Picture Books and more. See more

Product Details

  • Series: The Morgan Kaufmann Series in Data Management Systems
  • Paperback: 560 pages
  • Publisher: Morgan Kaufmann; 2 edition (June 22, 2005)
  • Language: English
  • ISBN-10: 0120884070
  • ISBN-13: 978-0120884070
  • Product Dimensions: 7.5 x 1.1 x 9.2 inches
  • Shipping Weight: 2.4 pounds
  • Average Customer Review: 3.9 out of 5 stars  See all reviews (38 customer reviews)
  • Amazon Best Sellers Rank: #512,094 in Books (See Top 100 in Books)

Customer Reviews

Top Customer Reviews

By Developer on March 21, 2006
Format: Paperback
I'm surprisingly please with this book. I've been reading up on the topic and associated algorithms in other books for some time; I'm a software developer but don't have a statistics background, and so felt a lot of the texts were too focused on the math and the theory while being thin on content when it came to "rubber hitting the road", or even using clear, simple examples and straight-forward notation.

This book is so well-written that it communicates the concepts clearly, lucidly and in an organized fashion. The section that introduces Bayesian probability was drop-dead simple to follow. Quite frankly, having read a few other treatments on it, I can now say that everything else I read before this was overly complicated. Brevity is the soul of wit, no?

To the reviewer who criticized the authors use of words to describe equations: This is what the authors intended to do. Would you fault them for writing in English if you wanted Greek? Not everyone who can benefit from applied data mining has the requisite background to understand the nitty gritty mathematics, nor should they have to, if they just want to understand the behavior and practical applications of the technology.
Comment 57 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Paperback Verified Purchase
This book is very easy to read and understand. Unlike Hastie's Statistical Learning book, it is not geared towards those with an expert level knowledge of statistics, and instead takes time to explain functions and formulas for the person with a decent but not extrordinary understanding of statistical/math concepts. For example, their description of a Gaussian was the clearest I've seen. On the other hand, if you're math/statistics background is considerable, you may find this book somewhat simplistic or tedious.

The book has a good coverage of techniques and algorithms, although I was somewhat disappointed that they do not mention Influence Diagrams, considering the amount of coverage of both decision trees and Bayesian techniques. Their discussion of Combining Multiple Models, however, is well done, and is not covered to this extent in most books I've seen. I also like how they broke out the discussion of input and output (knowledge representation) into their own chapters.

Addendum 10/30: After reading a good hunk of this book I still agree with most of what I said earlier, but I do think the authors could have gone into graphical models a lot more. At the end of the discussion on Bayesian networks, Markov networks and other graphical models are mentioned very briefly and the author says they are very big in ML right now, but he doesn't say why they didn't describe them further. It might have something to do with the organization of the book. Graphical models almost need a chapter of their own but the book's chapters discuss all techniques in one chapter but with varying levels of detail.
Comment 36 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Paperback Verified Purchase
The major virtue of this book is the emphasis on practical applications and bread-and-butter techniques for accomplishing tasks that one could expect in a business environment. That is not to say that these techniques could not be used in a scientific research environment. They indeed could be, and in fact may be even easier to implement due to the long time scales that are available in research environments for processing information. In the business world however data mining has proven to be an activity that gives a substantial competitive edge, and so many businesses are seeking even more sophisticated methods of data mining and Web mining. Data mining could easily be considered to a branch of artificial intelligence (AI), due to its emphasis on learning patterns and performing classification, and the learning and classification tools it uses were discovered by individuals who would describe themselves as being researchers in artificial intelligence. But many, and it is fair to include the authors of this book, do not want to view data mining as part of artificial intelligence, since the latter stirs up discussions on the origin of intelligence, autonomous robots, and conscious machines, to paraphrase a line from chapter 8 of this book. The authors make it a point to emphasize that data mining, or "machine learning" is concerned with the algorithms for the inference of structure from data and the validation of that structure.

Along with its practical emphasis, the book includes discussions of some very interesting developments that are not usually included in books or monographs on data mining. One of these concerns the current research in `programming by demonstration.
Read more ›
Comment 41 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Paperback Verified Purchase
This book is perfect if you are trying to get your hands around what data mining and machine learning is. Most of the books I have read on this subject want to start with equations and get more complex from there, with little practicality. This book makes extensive use of examples and introduces the mathematical basis for algorithms where needed. The authors make the point that simpler algoritms often work best for solving machine learning problems. Similarly, I would argue, simpler books work best for understanding highly complex fields. I very highly recommend this book.
Comment 15 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse

Most Recent Customer Reviews

Pages with Related Products. See and discover other items: game ai