Nuevo:
-16% US$67.02US$67.02
Entrega entre el 28 de octubre - 6 de noviembre
Enviado por: Amazon Vendido por: Half-Price Hank's Books
Ahorra con Usado - Aceptable
US$37.26US$37.26
Entrega el viernes, 18 de octubre
Enviado por: Amazon Vendido por: 2nd Life Aloha
Descarga la app de Kindle gratis y comienza a leer libros Kindle al instante desde tu smartphone, tablet o computadora, sin necesidad de ningún dispositivo Kindle.
Lee al instante desde tu navegador con Kindle para la web.
Usando la cámara de tu celular escanea el siguiente código y descarga la aplicación Kindle.
Imagen no disponible
Color:
-
-
-
- Para ver la descarga de este video Flash Player
Decision Making Under Uncertainty: Theory and Application (MIT Lincoln Laboratory Series) Illustrated Edición
Opciones de compra y productos Add-on
Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.
Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance.
Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
- ISBN-100262029251
- ISBN-13978-0262029254
- EdiciónIllustrated
- EditorialThe MIT Press
- Fecha de publicación17 Julio 2015
- IdiomaInglés
- Dimensiones9.1 x 7 x 1.1 pulgadas
- Número de páginas352 páginas
Comprados juntos habitualmente

Los clientes que compraron este producto también compraron

Information Theory, Inference and Learning AlgorithmsTapa duraUS$9.66 de envíoSolo queda(n) 4 en stock (hay más unidades en camino).
Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series)Tapa duraUS$9.66 de envíoRecíbelo el martes, 15 de octubreSolo queda(n) 5 en stock (hay más unidades en camino).
Algorithms for Optimization (Mit Press)Tapa duraUS$9.66 de envíoRecíbelo el viernes, 18 de octubreSolo queda(n) 12 en stock (hay más unidades en camino).
Applied State Estimation and Association (MIT Lincoln Laboratory Series)Chaw-Bing ChangTapa duraUS$9.66 de envíoRecíbelo el martes, 15 de octubreSolo queda(n) 3 en stock (hay más unidades en camino).
Probabilistic Machine Learning: Advanced Topics (Adaptive Computation and Machine Learning series)Tapa duraUS$9.66 de envíoRecíbelo el martes, 15 de octubre
Opiniones editoriales
Biografía del autor
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.
Detalles del producto
- Editorial : The MIT Press; Illustrated edición (17 Julio 2015)
- Idioma : Inglés
- Tapa dura : 352 páginas
- ISBN-10 : 0262029251
- ISBN-13 : 978-0262029254
- Edad de lectura : A partir de 18 años
- Curso : 12 and up
- Dimensiones : 9.1 x 7 x 1.1 pulgadas
- Clasificación en los más vendidos de Amazon: nº1,317,144 en Libros (Ver el Top 100 en Libros)
- nº913 en Piratería Informática
- nº2,296 en Inteligencia Artificial y Semántica (Libros)
- nº6,556 en Ciencias de la Conducta
- Opiniones de clientes:
Opiniones de clientes
- 5 estrellas4 estrellas3 estrellas2 estrellas1 estrella5 estrellas71%6%0%7%16%71%
- 5 estrellas4 estrellas3 estrellas2 estrellas1 estrella4 estrellas71%6%0%7%16%6%
- 5 estrellas4 estrellas3 estrellas2 estrellas1 estrella3 estrellas71%6%0%7%16%0%
- 5 estrellas4 estrellas3 estrellas2 estrellas1 estrella2 estrellas71%6%0%7%16%7%
- 5 estrellas4 estrellas3 estrellas2 estrellas1 estrella1 estrella71%6%0%7%16%16%
Las opiniones de clientes, incluidas las valoraciones de productos ayudan a que los clientes conozcan más acerca del producto y decidan si es el producto adecuado para ellos.
Para calcular la valoración global y el desglose porcentual por estrella, no utilizamos un promedio simple. En cambio, nuestro sistema considera cosas como la actualidad de la opinión y si el revisor compró el producto en Amazon. También analiza las opiniones para verificar la confiabilidad.
Más información sobre cómo funcionan las opiniones de clientes en AmazonOpiniones con imágenes
Defective print
-
Opiniones principales
Opiniones destacadas de los Estados Unidos
Ha surgido un problema al filtrar las opiniones justo en este momento. Vuelva a intentarlo en otro momento.
This is hands down the best introductory text I have come across on quantitative and computational methods for decision making and autonomous planning, with applications ranging from autonomous vehicle control to business decision making.
One reason this book is great is that it covers an incredible breadth of topics - everything from the foundations (decision making formalism, probabilistic modeling, sequential decision making basics) to rather advanced theory (POMDPs, newest advances in reinforcement learning) - without sacrificing the rigor and the depth of coverage. At the same time, the material is presented in a very logical order, which ensures that the new knowledge gradually builds on top of the theoretical foundation. The language of the book is plain, precise, concise and very easy to understand - even to people without advanced math background.
The quality of the math notation is in itself fascinating - the author has gone to great length to ensure all the math is very easy to read and comprehend. Finally, each chapter of the book provides an extensive literature review with up-to-date sources.
My impression is that this book could work well both as an introduction to the decision making methods, and as a review of a particular subfield. I strongly recommend this text.
The level of detail in this book is good for initial learning, but not sufficient if you actually need to implement a particular solution. However, if you want the full detail on some particular subject there are good lists of suggested readings at the end of each chapter.
One unique aspect of this book are the applications chapters toward the end. These chapters are written by several authors, with experience in the area.
Kochenderfer covers a large variety of methods for tackling decision making problems. Algorithms are clearly outlined and are straightforward to implement on one's own.

