Enjoy fast, FREE delivery, exclusive deals and award-winning movies & TV shows with Prime
Try Prime
and start saving today with Fast, FREE Delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Instant streaming of thousands of movies and TV episodes with Prime Video
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
$22.13$22.13
FREE delivery: Saturday, May 27 on orders over $25.00 shipped by Amazon.
Ships from: Amazon.com Sold by: Amazon.com
Buy used: $12.23
Other Sellers on Amazon
& FREE Shipping
89% positive over last 12 months
& FREE Shipping
93% positive over lifetime
+ $3.99 shipping
95% positive over last 12 months
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required. Learn more
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements Hardcover – July 12, 2010
| Price | New from | Used from |
|
Audible Audiobook, Unabridged
"Please retry" |
$0.00
| Free with your Audible trial | |
|
Audio CD, CD, Unabridged
"Please retry" | $26.54 | $26.87 |
Purchase options and add-ons
Why did Gandhi hate iodine (I, 53)? How did radium (Ra, 88) nearly ruin Marie Curie's reputation? And why is gallium (Ga, 31) the go-to element for laboratory pranksters?
The Periodic Table is a crowning scientific achievement, but it's also a treasure trove of adventure, betrayal, and obsession. These fascinating tales follow every element on the table as they play out their parts in human history, and in the lives of the (frequently) mad scientists who discovered them. The Disappearing Spoon masterfully fuses science with the classic lore of invention, investigation, and discovery -- from the Big Bang through the end of time.
Though solid at room temperature, gallium is a moldable metal that melts at 84 degrees Fahrenheit. A classic science prank is to mold gallium spoons, serve them with tea, and watch guests recoil as their utensils disappear.
- Print length400 pages
- LanguageEnglish
- PublisherLittle, Brown and Company
- Publication dateJuly 12, 2010
- Dimensions6 x 1 x 9.25 inches
- ISBN-100316051640
- ISBN-13978-0316051644
- Lexile measure1210L
Frequently bought together

What do customers buy after viewing this item?
- Highest ratedin this set of products
The Poisoner's Handbook: Murder and the Birth of Forensic Medicine in Jazz Age New YorkPaperback - Lowest Pricein this set of products
Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made WorldPaperback
That’s half of chemistry in one sentence: atoms that don’t have enough electrons in the outer level will fight, barter, beg, make and break alliances, or do whatever they must to get the right number.Highlighted by 1,141 Kindle readers
Instead of a proton donor, then, an acid is an electron thief. In contrast, bases such as bleach or lye, which are the opposites of acids, might be called electron donors.Highlighted by 862 Kindle readers
The atomic number plus the number of neutrons is called the atomic weight.Highlighted by 829 Kindle readers
Editorial Reviews
From Publishers Weekly
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.
From Booklist
Review
"The best science writers...bring an enthusiasm for the material that infects those of us who wouldn't usually give a flying proton. Sam Kean...unpacks the periodic table's bag of tricks with such aplomb and fascination that material normally as heavy as lead transmutes into gold. With the anecdotal flourishes of Oliver Sacks and the populist accessibility of Malcolm Gladwell...Kean succeeds in giving us the cold hard facts, both human and chemical, behind the astounding phenomena without sacrificing any of the wonder--a trait vital to any science writer worth his NaCl. A-" --Entertainment Weekly
"Sam Kean...is brimming with puckish wit, and his love for the elements is downright infectious. Kean's book is so rambunctious and so much fun, you'll find yourself wanting to grab someone just to share tidbits. But the alchemy of this book is the way Kean makes you see and experience and appreciate the world differently, with a real sense of wonder and a joy of discovery, that is downright elemental." --Caroline Leavitt, Boston Globe
"This is nonfiction to make you sound smart over gin and tonics: the human history behind the periodic table." --Time.com
"Sam Kean...has done something remarkable: He's made some highly technical science accessible, placed well-known and lesser-known discoveries in the contest of history and made reading about the lives of the men and women inside the lab coats enjoyable." --Austin American-Statesman
"Fascinating. Kean has Bill Bryson's comic touch when it comes to describing genius-lunatic scientists...The book is not so much a primer in chemistry as a lively history of the elements and the characters behind their discovery." --New Scientist
"A quirky and refreshingly human look at a structure we usually think of as purely pragmatic." --SeedMagazine.com
"[The Disappearing Spoon is] crammed full of compelling anecdotes about each of the elements, plenty of nerd-gossip involving Nobel prizes, and enough political intrigue to capture the interest of the anti-elemental among us. Once you're done with this book, do your chemistry teacher and all her future students a favor, and send her a copy." --Galleycat
"Kean loves a good story, and his account teems with ripping yarns, colorful characters, and the occasional tall tale of chemical invention....let us hope that Kean...continues to bring the excitement of science out of the lab and into the homes of the American reading public." --Chemical & Engineering News
"An idiosyncratic romp through the history of science. The author is a great raconteur with plenty of stories to tell....entertaining and enlightening." --Kirkus Reviews
"The Disappearing Spoon shines a welcome light on the beauty of the periodic table. Follow plain speaking and humorous Sam Kean into its intricate geography and stray into astronomy, biology, and history, learn of neon rain and gas warfare, meet both ruthless and selfless scientists, and before it is over fall head over heels for the anything but arcane subject of chemistry." --Bill Streever, author of Cold
"If you stared a little helplessly at the chart of the periodic table on the wall of your high school chemistry class, then this is the book for you. It elucidates both the meanings and the pleasures of those numbers and letters, and does so with style and dash." --Bill McKibben, author of Eaarth: Making a Life on a Tough New Planet
About the Author
The Disappearing Spoon was a runner-up for the Royal Society of London's book of the year for 2010, and The Violinist's Thumb and The Tale of the Dueling Neurosurgeons were nominated for the PEN/E.O. Wilson Literary Science Writing Award in 2013 and 2015, as well as the AAAS/Subaru SB&F prize.
His work has appeared in the Best American Nature and Science Writing, the New Yorker, the Atlantic, the New York Times Magazine, Psychology Today, Slate, Mental Floss, and other publications, and he has been featured on NPR's "Radiolab," "All Things Considered," and "Fresh Air."
Excerpt. © Reprinted by permission. All rights reserved.
The Disappearing Spoon
And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the ElementsBy Kean, SamLittle, Brown and Company
Copyright © 2010 Kean, SamAll right reserved.
ISBN: 9780316051644
Part I
ORIENTATION: COLUMN BY COLUMN, ROW BY ROW
1
Geography Is Destiny
When most people think of the periodic table, they remember a chart hanging on the front wall of their high school chemistry class, an asymmetric expanse of columns and rows looming over one of the teacher’s shoulders. The chart was usually enormous, six by four feet or so, a size both daunting and appropriate, given its importance to chemistry. It was introduced to the class in early September and was still relevant in late May, and it was the one piece of scientific information that, unlike lecture notes or textbooks, you were encouraged to consult during exams. Of course, part of the frustration you might remember about the periodic table could flow from the fact that, despite its being freely available to fall back on, a gigantic and fully sanctioned cheat sheet, it remained less than frickin’ helpful.
On the one hand, the periodic table seemed organized and honed, almost German engineered for maximum scientific utility. On the other hand, it was such a jumble of long numbers, abbreviations, and what looked for all the world like computer error messages ([Xe]6s24f15d1), it was hard not to feel anxious. And although the periodic table obviously had something to do with other sciences, such as biology and physics, it wasn’t clear what exactly. Probably the biggest frustration for many students was that the people who got the periodic table, who could really unpack how it worked, could pull so many facts from it with such dweeby nonchalance. It was the same irritation colorblind people must feel when the fully sighted find sevens and nines lurking inside those parti-colored dot diagrams—crucial but hidden information that never quite resolves itself into coherence. People remember the table with a mix of fascination, fondness, inadequacy, and loathing.
Before introducing the periodic table, every teacher should strip away all the clutter and have students just stare at the thing, blank.
What does it look like? Sort of like a castle, with an uneven main wall, as if the royal masons hadn’t quite finished building up the left-hand side, and tall, defensive turrets on both ends. It has eighteen jagged columns and seven horizontal rows, with a “landing strip” of two extra rows hanging below. The castle is made of “bricks,” and the first non-obvious thing about it is that the bricks are not interchangeable. Each brick is an element, or type of substance (as of now, 112 elements, with a few more pending, make up the table), and the entire castle would crumble if any of those bricks didn’t sit exactly where it does. That’s no exaggeration: if scientists determined that one element somehow fit into a different slot or that two of the elements could be swapped, the entire edifice would tumble down.
Another architectural curiosity is that the castle is made up of different materials in different areas. That is, not all the bricks are made of the same substance, nor do they have the same characteristics. Seventy-five percent of the bricks are metals, which means most elements are cold, gray solids, at least at temperatures human beings are used to. A few columns on the eastern side contain gases. Only two elements, mercury and bromine, are liquids at room temperature. In between the metals and gases, about where Kentucky sits on a U.S. map, lie some hard-to-define elements, whose amorphous nature gives them interesting properties, such as the ability to make acids billions of times stronger than anything locked up in a chemical supply room. Overall, if each brick was made of the substance it represented, the castle of the elements would be a chimera with additions and wings from incongruent eras, or, more charitably, a Daniel Libeskind building, with seemingly incompatible materials grafted together into an elegant whole.
The reason for lingering over the blueprints of the castle walls is that the coordinates of an element determine nearly everything scientifically interesting about it. For each element, its geography is its destiny. In fact, now that you have a sense of what the table looks like in outline, I can switch to a more useful metaphor: the periodic table as a map. And to sketch in a bit more detail, I’m going to plot this map from east to west, lingering over both well-known and out-of-the-way elements.
First up, in column eighteen at the far right-hand side, is a set of elements known as the noble gases. Noble is an archaic, funny-sounding word, less chemistry than ethics or philosophy. And indeed, the term “noble gases” goes back to the birthplace of Western philosophy, ancient Greece. There, after his fellow Greeks Leucippus and Democritus invented the idea of atoms, Plato minted the word “elements” (in Greek, stoicheia) as a general term for different small particles of matter. Plato—who left Athens for his own safety after the death of his mentor, Socrates, around 400 BC and wandered around writing philosophy for years—of course lacked knowledge of what an element really is in chemistry terms. But if he had known, he no doubt would have selected the elements on the eastern edge of the table, especially helium, as his favorites.
In his dialogue on love and the erotic, The Symposium, Plato claimed that every being longs to find its complement, its missing half. When applied to people, this implies passion and sex and all the troubles that accompany passion and sex. In addition, Plato emphasized throughout his dialogues that abstract and unchanging things are intrinsically more noble than things that grub around and interact with gross matter. This explains why he adored geometry, with its idealized circles and cubes, objects perceptible only to our reason. For nonmathematical objects, Plato developed a theory of “forms,” which argued that all objects are shadows of one ideal type. All trees, for instance, are imperfect copies of an ideal tree, whose perfect “tree-ness” they aspire to. The same with fish and “fish-ness” or even cups and “cup-ness.” Plato believed that these forms were not merely theoretical but actually existed, even if they floated around in an empyrean realm beyond the direct perception of humans. He would have been as shocked as anyone, then, when scientists began conjuring up ideal forms on earth with helium.
In 1911, a Dutch-German scientist was cooling mercury with liquid helium when he discovered that below -452°F the system lost all electrical resistance and became an ideal conductor. This would be sort of like cooling an iPod down to hundreds of degrees below zero and finding that the battery remained fully charged no matter how long or loud you played music, until infinity, as long as the helium kept the circuitry cold. A Russian-Canadian team pulled an even neater trick in 1937 with pure helium. When cooled down to -456°F, helium turned into a superfluid, with exactly zero viscosity and zero resistance to flow—perfect fluidness. Superfluid helium defies gravity and flows uphill and over walls. At the time, these were flabbergasting finds. Scientists often fudge and pretend that effects like friction equal zero, but only to simplify calculations. Not even Plato predicted someone would actually find one of his ideal forms.
Helium is also the best example of “element-ness”—a substance that cannot be broken down or altered by normal, chemical means. It took scientists 2,200 years, from Greece in 400 BC to Europe in 1800 AD, to grasp what elements really are, because most are too changeable. It was hard to see what made carbon carbon when it appeared in thousands of compounds, all with different properties. Today we would say that carbon dioxide, for instance, isn’t an element because one molecule of it divides into carbon and oxygen. But carbon and oxygen are elements because you cannot divide them more finely without destroying them. Returning to the theme of The Symposium and Plato’s theory of erotic longing for a missing half, we find that virtually every element seeks out other atoms to form bonds with, bonds that mask its nature. Even most “pure” elements, such as oxygen molecules in the air (O2), always appear as composites in nature. Yet scientists might have figured out what elements are much sooner had they known about helium, which has never reacted with another substance, has never been anything but a pure element.
Helium acts this way for a reason. All atoms contain negative particles called electrons, which reside in different tiers, or energy levels, inside the atom. The levels are nested concentrically inside each other, and each level needs a certain number of electrons to fill itself and feel satisfied. In the innermost level, that number is two. In other levels, it’s usually eight. Elements normally have equal numbers of negative electrons and positive particles called protons, so they’re electrically neutral. Electrons, however, can be freely traded between atoms, and when atoms lose or gain electrons, they form charged atoms called ions.
What’s important to know is that atoms fill their inner, lower-energy levels as full as possible with their own electrons, then either shed, share, or steal electrons to secure the right number in the outermost level. Some elements share or trade electrons diplomatically, while others act very, very nasty. That’s half of chemistry in one sentence: atoms that don’t have enough electrons in the outer level will fight, barter, beg, make and break alliances, or do whatever they must to get the right number.
Helium, element two, has exactly the number of electrons it needs to fill its only level. This “closed” configuration gives helium tremendous independence, because it doesn’t need to interact with other atoms or share or steal electrons to feel satisfied. Helium has found its erotic complement in itself. What’s more, that same configuration extends down the entire eighteenth column beneath helium—the gases neon, argon, krypton, xenon, and radon. All these elements have closed shells with full complements of electrons, so none of them reacts with anything under normal conditions. That’s why, despite all the fervid activity to identify and label elements in the 1800s—including the development of the periodic table itself—no one isolated a single gas from column eighteen before 1895. That aloofness from everyday experience, so like his ideal spheres and triangles, would have charmed Plato. And it was that sense the scientists who discovered helium and its brethren on earth were trying to evoke with the name “noble gases.” Or to put it in Plato-like words, “He who adores the perfect and unchangeable and scorns the corruptible and ignoble will prefer the noble gases, by far, to all other elements. For they never vary, never waver, never pander to other elements like hoi polloi offering cheap wares in the marketplace. They are incorruptible and ideal.”
The repose of the noble gases is rare, however. One column to the west sits the most energetic and reactive gases on the periodic table, the halogens. And if you think of the table wrapping around like a Mercator map, so that east meets west and column eighteen meets column one, even more violent elements appear on the western edge, the alkali metals. The pacifist noble gases are a demilitarized zone surrounded by unstable neighbors.
Despite being normal metals in some ways, the alkalis, instead of rusting or corroding, can spontaneously combust in air or water. They also form an alliance of interests with the halogen gases. The halogens have seven electrons in the outer layer, one short of the octet they need, while the alkalis have one electron in the outer level and a full octet in the level below. So it’s natural for the latter to dump their extra electron on the former and for the resulting positive and negative ions to form strong links.
This sort of linking happens all the time, and for this reason electrons are the most important part of an atom. They take up virtually all an atom’s space, like clouds swirling around an atom’s compact core, the nucleus. That’s true even though the components of the nucleus, protons and neutrons, are far bigger than individual electrons. If an atom were blown up to the size of a sports stadium, the proton-rich nucleus would be a tennis ball at the fifty-yard line. Electrons would be pinheads flashing around it—but flying so fast and knocking into you so many times per second that you wouldn’t be able to enter the stadium: they’d feel like a solid wall. As a result, whenever atoms touch, the buried nucleus is mute; only the electrons matter.
One quick caveat: Don’t get too attached to the image of electrons as discrete pinheads flashing about a solid core. Or, in the more usual metaphor, don’t necessarily think of electrons as planets circling a nucleic sun. The planet analogy is useful, but as with any analogy, it’s easy to take too far, as some renowned scientists have found out to their chagrin.
Bonding between ions explains why combinations of halogens and alkalis, such as sodium chloride (table salt), are common. Similarly, elements from columns with two extra electrons, such as calcium, and elements from columns that need two extra electrons, such as oxygen, frequently align themselves. It’s the easiest way to meet everyone’s needs. Elements from nonreciprocal columns also match up according to the same laws. Two ions of sodium (Na+) take on one of oxygen (O-2) to form sodium oxide, Na2O. Calcium chloride combines as CaCl2 for the same reasons. Overall, you can usually tell at a glance how elements will combine by noting their column numbers and figuring out their charges. The pattern all falls out of the table’s pleasing left-right symmetry.
Unfortunately, not all of the periodic table is so clean and neat. But the raggedness of some elements actually makes them interesting places to visit.
There’s an old joke about a lab assistant who bursts into a scientist’s office one morning, hysterical with joy despite a night of uninterrupted work. The assistant holds up a fizzing, hissing, corked bottle of green liquid and exclaims he has discovered a universal solvent. His sanguine boss peers at the bottle and asks, “And what is a universal solvent?” The assistant sputters, “An acid that dissolves all substances!”
After considering this thrilling news—not only would this universal acid be a scientific miracle, it would make both men billionaires—the scientist replies, “How are you holding it in a glass bottle?”
It’s a good punch line, and it’s easy to imagine Gilbert Lewis smiling, perhaps poignantly. Electrons drive the periodic table, and no one did more than Lewis to elucidate how electrons behave and form bonds in atoms. His electron work was especially illuminating for acids and bases, so he would have appreciated the assistant’s absurd claim. More personally, the punch line might have reminded Lewis how fickle scientific glory can be.
A wanderer, Lewis grew up in Nebraska, attended college and graduate school in Massachusetts around 1900, and then studied in Germany under chemist Walther Nernst. Life under Nernst proved so miserable, for legitimate and merely perceived reasons, that Lewis returned to Massachusetts for an academic post after a few months. That, too, proved unhappy, so he fled to the newly conquered Philippines to work for the U.S. government, taking with him only one book, Nernst’s Theoretical Chemistry, so he could spend years rooting out and obsessively publishing papers on every quibbling error.
Eventually, Lewis grew homesick and settled at the University of California at Berkeley, where, over forty years, he built Berkeley’s chemistry department into the world’s best. Though that may sound like a happy ending, it wasn’t. The singular fact about Lewis is that he was probably the best scientist never to win the Nobel Prize, and he knew it. No one ever received more nominations, but his naked ambition and a trail of disputes worldwide poisoned his chances of getting enough votes. He soon began resigning (or was forced to resign) from prestigious posts in protest and became a bitter hermit.
Apart from personal reasons, Lewis never secured the Nobel Prize because his work was broad rather than deep. He never discovered one amazing thing, something you could point to and say, Wow! Instead, he spent his life refining how an atom’s electrons work in many contexts, especially the class of molecules known as acids and bases. In general, whenever atoms swap electrons to break or form new bonds, chemists say they’ve “reacted.” Acid-base reactions offer a stark and often violent example of those swaps, and Lewis’s work on acids and bases did as much as anyone’s to show what exchanging electrons means on a submicroscopic level.
Before about 1890, scientists judged acids and bases by tasting or dunking their fingers in them, not exactly the safest or most reliable methods. Within a few decades, scientists realized that acids were in essence proton donors. Many acids contain hydrogen, a simple element that consists of one electron circling one proton (that’s all hydrogen has for a nucleus). When an acid like hydrochloric acid (HCl) mixes with water, it fissures into H+ and Cl-. Removing the negative electron from the hydrogen leaves just a bare proton, the H+, which swims away on its own. Weak acids like vinegar pop a few protons into solution, while strong acids like sulfuric acid flood solutions with them.
Lewis decided this definition of an acid limited scientists too much, since some substances act like acids without relying on hydrogen. So Lewis shifted the paradigm. Instead of saying that H+ splits off, he emphasized that Cl- absconds with its electron. Instead of a proton donor, then, an acid is an electron thief. In contrast, bases such as bleach or lye, which are the opposites of acids, might be called electron donors. These definitions, in addition to being more general, emphasize the behavior of electrons, which fits better with the electron-dependent chemistry of the periodic table.
Although Lewis laid this theory out in the 1920s and 1930s, scientists are still pushing the edge of how strong they can make acids using his ideas. Acid strength is measured by the pH scale, with lower numbers being stronger, and in 2005 a chemist from New Zealand invented a boron-based acid called a carborane, with a pH of -18. To put that in perspective, water has a pH of 7, and the concentrated HCl in our stomachs has a pH of 1. But according to the pH scale’s unusual accounting methods, dropping one unit (e.g., from 3 to 4) boosts an acid’s strength by ten times. So moving from stomach acid, at 1, to the boron-based acid, at -18, means the latter is ten billion billion times stronger. That’s roughly the number of atoms it would take to stack them to the moon.
There are even worse acids based on antimony, an element with probably the most colorful history on the periodic table. Nebuchadnezzar, the king who built the Hanging Gardens of Babylon in the sixth century BC, used a noxious antimony-lead mix to paint his palace walls yellow. Perhaps not coincidentally, he soon went mad, sleeping outdoors in fields and eating grass like an ox. Around that same time, Egyptian women were applying a different form of antimony as mascara, both to decorate their faces and to give themselves witchlike powers to cast the evil eye on enemies. Later, medieval monks—not to mention Isaac Newton—grew obsessed with the sexual properties of antimony and decided this half metal, half insulator, neither one thing nor the other, was a hermaphrodite. Antimony pills also won fame as laxatives. Unlike modern pills, these hard antimony pills didn’t dissolve in the intestines, and the pills were considered so valuable that people rooted through fecal matter to retrieve and reuse them. Some lucky families even passed down laxatives from father to son. Perhaps for this reason, antimony found heavy work as a medicine, although it’s actually toxic. Mozart probably died from taking too much to combat a severe fever.
Scientists eventually got a better handle on antimony. By the 1970s, they realized that its ability to hoard electron-greedy elements around itself made it wonderful for building custom acids. The results were as astounding as the helium superfluids. Mixing antimony pentafluoride, SbF5, with hydrofluoric acid, HF, produces a substance with a pH of -31. This superacid is 100,000 billion billion billion times more potent than stomach acid and will eat through glass, as ruthlessly as water through paper. You couldn’t pick up a bottle of it because after it ate through the bottle, it would dissolve your hand. To answer the professor in the joke, it’s stored in special Teflon-lined containers.
To be honest, though, calling the antimony mix the world’s strongest acid is kind of cheating. By themselves, SbF5 (an electron thief ) and HF (a proton donor) are nasty enough. But you have to sort of multiply their complementary powers together, by mixing them, before they attain superacid status. They’re strongest only under contrived circumstances. Really, the strongest solo acid is still the boron-based carborane (HCB11Cl11). And this boron acid has the best punch line so far: It’s simultaneously the world’s strongest and gentlest acid. To wrap your head around that, remember that acids split into positive and negative parts. In carborane’s case, you get H+ and an elaborate cagelike structure formed by everything else (CB11Cl11-). With most acids it’s the negative portion that’s corrosive and caustic and eats through skin. But the boron cage forms one of the most stable molecules ever invented. Its boron atoms share electrons so generously that it practically becomes helium, and it won’t go around ripping electrons from other atoms, the usual cause of acidic carnage.
So what’s carborane good for, if not dissolving glass bottles or eating through bank vaults? It can add an octane kick to gasoline, for one thing, and help make vitamins digestible. More important is its use in chemical “cradling.” Many chemical reactions involving protons aren’t clean, quick swaps. They require multiple steps, and protons get shuttled around in millionths of billionths of seconds—so quickly scientists have no idea what really happened. Carborane, though, because it’s so stable and unreactive, will flood a solution with protons, then freeze the molecules at crucial intermediate points. Carborane holds the intermediate species up on a soft, safe pillow. In contrast, antimony superacids make terrible cradles, because they shred the molecules scientists most want to look at. Lewis would have enjoyed seeing this and other applications of his work with electrons and acids, and it might have brightened the last dark years of his life. Although he did government work during World War I and made valuable contributions to chemistry until he was in his sixties, he was passed over for the Manhattan Project during World War II. This galled him, since many chemists he had recruited to Berkeley played important roles in building the first atomic bomb and became national heroes. In contrast, he puttered around during the war, reminiscing and writing a wistful pulp novel about a soldier. He died alone in his lab in 1946.
There’s general agreement that after smoking twenty-some cigars per day for forty-plus years, Lewis died of a heart attack. But it was hard not to notice that his lab smelled like bitter almonds—a sign of cyanide gas—the afternoon he died. Lewis used cyanide in his research, and it’s possible he dropped a canister of it after going into cardiac arrest. Then again, Lewis had had lunch earlier in the day—a lunch he’d initially refused to attend—with a younger, more charismatic rival chemist who had won the Nobel Prize and served as a special consultant to the Manhattan Project. It’s always been in the back of some people’s minds that the honored colleague might have unhinged Lewis. If that’s true, his facility with chemistry might have been both convenient and unfortunate.
In addition to reactive metals on its west coast and halogens and noble gases up and down its east coast, the periodic table contains a “great plains” that stretches right across its middle—columns three through twelve, the transition metals. To be honest, the transition metals have exasperating chemistry, so it’s hard to say anything about them generally—except be careful. You see, heavier atoms like the transition metals have more flexibility than other atoms in how they store their electrons. Like other atoms, they have different energy levels (designated one, two, three, etc.), with lower energy levels buried beneath higher levels. And they also fight other atoms to secure full outer energy levels with eight electrons. Figuring out what counts as the outer level, however, is trickier.
As we move horizontally across the periodic table, each element has one more electron than its neighbor to the left. Sodium, element eleven, normally has eleven electrons; magnesium, element twelve, has twelve electrons; and so on. As elements swell in size, they not only sort electrons into energy levels, they also store those electrons in different-shaped bunks, called shells. But atoms, being unimaginative and conformist, fill shells and energy levels in the same order as we move across the table. Elements on the far left-hand side of the table put the first electron in an s-shell, which is spherical. It’s small and holds only two electrons—which explains the two taller columns on the left side. After those first two electrons, atoms look for something roomier. Jumping across the gap, elements in the columns on the right-hand side begin to pack new electrons one by one into a p-shell, which looks like a misshapen lung. P-shells can hold six electrons, hence the six taller columns on the right. Notice that across each row near the top, the two s-shell electrons plus the six p-shell electrons add up to eight electrons total, the number most atoms want in the outer shell. And except for the self-satisfied noble gases, all these elements’ outer-shell electrons are available to dump onto or react with other atoms. These elements behave in a logical manner: add a new electron, and the atom’s behavior should change, since it has more electrons available to participate in reactions.
Now for the frustrating part. The transition metals appear in columns three through twelve of the fourth through seventh rows, and they start to file electrons into what are called d-shells, which hold ten electrons. (D-shells look like nothing so much as misshapen balloon animals.) Based on what every other previous element has done with its shells, you’d expect the transition metals to put each extra d-shell electron on display in an outer layer and for that extra electron to be available for reactions, too. But no, transition metals squirrel their extra electrons away and prefer to hide them beneath other layers. The decision of the transition metals to violate convention and bury their d-shell electrons seems ungainly and counterintuitive—Plato would not have liked it. It’s also how nature works, and there’s not much we can do about it.
There’s a payoff to understanding this process. Normally as we move horizontally across the table, the addition of one electron to each transition metal would alter its behavior, as happens with elements in other parts of the table. But because the metals bury their d-shell electrons in the equivalent of false-bottomed drawers, those electrons end up shielded. Other atoms trying to react with the metals cannot get at those electrons, and the upshot is that many metals in a row leave the same number of electrons exposed. They therefore act the same way chemically. That’s why, scientifically, many metals look so indistinguishable and act so indistinguishably. They’re all cold, gray lumps because their outer electrons leave them no choice but to conform. (Of course, just to confuse things, sometimes buried electrons do rise up and react. That’s what causes the slight differences between some metals. That’s also why their chemistry is so exasperating.)
F-shell elements are similarly messy. F-shells begin to appear in the first of the two free-floating rows of metals beneath the periodic table, a group called the lanthanides. (They’re also called the rare earths, and according to their atomic numbers, fifty-seven through seventy-one, they really belong in the sixth row. They were relegated to the bottom to make the table skinnier and less unwieldy.) The lanthanides bury new electrons even more deeply than the transition metals, often two energy levels down. This means they are even more alike than the transition metals and can barely be distinguished from one another. Moving along the row is like driving from Nebraska to South Dakota and not realizing you’ve crossed the state line.
It’s impossible to find a pure sample of a lanthanide in nature, since its brothers always contaminate it. In one famous case, a chemist in New Hampshire tried to isolate thulium, element sixty-nine. He started with huge casserole dishes of thulium-rich ore and repeatedly treated the ore with chemicals and boiled it, a process that purified the thulium by a small fraction each time. The dissolving took so long that he could do only one or two cycles per day at first. Yet he repeated this tedious process fifteen thousand times, by hand, and winnowed the hundreds of pounds of ore down to just ounces before the purity satisfied him. Even then, there was still a little cross-contamination from other lanthanides, whose electrons were buried so deep, there just wasn’t enough of a chemical handle to grasp them and pull them out.
Electron behavior drives the periodic table. But to really understand the elements, you can’t ignore the part that makes up more than 99 percent of their mass—the nucleus. And whereas electrons obey the laws of the greatest scientist never to win the Nobel Prize, the nucleus obeys the dictates of probably the most unlikely Nobel laureate ever, a woman whose career was even more nomadic than Lewis’s.
Maria Goeppert was born in Germany in 1906. Even though her father was a sixth-generation professor, Maria had trouble convincing a Ph.D. program to admit a woman, so she bounced from school to school, taking lectures wherever she could. She finally earned her doctorate at the University of Hannover, defending her thesis in front of professors she’d never met. Not surprisingly, with no recommendations or connections, no university would hire her upon her graduation. She could enter science only obliquely, through her husband, Joseph Mayer, an American chemistry professor visiting Germany. She returned to Baltimore with him in 1930, and the newly named Goeppert-Mayer began tagging along with Mayer to work and conferences. Unfortunately, Mayer lost his job several times during the Great Depression, and the family drifted to universities in New York and then Chicago.
Most schools tolerated Goeppert-Mayer’s hanging around to chat science. Some even condescended to give her work, though they refused to pay her, and the topics were stereotypically “feminine,” such as figuring out what causes colors. After the Depression lifted, hundreds of her intellectual peers gathered for the Manhattan Project, perhaps the most vitalizing exchange of scientific ideas ever. Goeppert-Mayer received an invitation to participate, but peripherally, on a useless side project to separate uranium with flashing lights. No doubt she chafed in private, but she craved science enough to continue to work under such conditions. After World War II, the University of Chicago finally took her seriously enough to make her a professor of physics. Although she got her own office, the department still didn’t pay her.
Nevertheless, bolstered by the appointment, she began work in 1948 on the nucleus, the core and essence of an atom. Inside the nucleus, the number of positive protons—the atomic number—determines the atom’s identity. In other words, an atom cannot gain or lose protons without becoming a different element. Atoms do not normally lose neutrons either, but an element’s atoms can have different numbers of neutrons—variations called isotopes. For instance, the isotopes lead-204 and lead-206 have identical atomic numbers (82) but different numbers of neutrons (122 and 124). The atomic number plus the number of neutrons is called the atomic weight. It took scientists many years to figure out the relationship between atomic number and atomic weight, but once they did, periodic table science got a lot clearer.
Goeppert-Mayer knew all this, of course, but her work touched on a mystery that was more difficult to grasp, a deceptively simple problem. The simplest element in the universe, hydrogen, is also the most abundant. The second-simplest element, helium, is the second most abundant. In an aesthetically tidy universe, the third element, lithium, would be the third most abundant, and so on. Our universe isn’t tidy. The third most common element is oxygen, element eight. But why? Scientists might answer that oxygen has a very stable nucleus, so it doesn’t disintegrate, or “decay.” But that only pushed the question back—why do certain elements like oxygen have such stable nuclei?
Unlike most of her contemporaries, Goeppert-Mayer saw a parallel here to the incredible stability of noble gases. She suggested that protons and neutrons in the nucleus sit in shells just like electrons and that filling nuclear shells leads to stability. To an outsider, this seems reasonable, a nice analogy. But Nobel Prizes aren’t won on conjectures, especially those by unpaid female professors. What’s more, this idea ruffled nuclear scientists, since chemical and nuclear processes are independent. There’s no reason why dependable, stay-at-home neutrons and protons should behave like tiny, capricious electrons, which abandon their homes for attractive neighbors. And mostly they don’t.
Except Goeppert-Mayer pursued her hunch, and by piecing together a number of unlinked experiments, she proved that nuclei do have shells and do form what she called magic nuclei. For complex mathematical reasons, magic nuclei don’t reappear periodically like elemental properties. The magic happens at atomic numbers two, eight, twenty, twenty-eight, fifty, eighty-two, and so on. Goeppert-Mayer’s work proved how, at those numbers, protons and neutrons marshal themselves into highly stable, highly symmetrical spheres. Notice too that oxygen’s eight protons and eight neutrons make it doubly magic and therefore eternally stable—which explains its seeming overabundance. This model also explains at a stroke why elements such as calcium (twenty) are disproportionately plentiful and, not incidentally, why our bodies employ these readily available minerals.
Goeppert-Mayer’s theory echoes Plato’s notion that beautiful shapes are more perfect, and her model of magic, orb-shaped nuclei became the ideal form against which all nuclei are judged. Conversely, elements stranded far between two magic numbers are less abundant because they form ugly, oblong nuclei. Scientists have even discovered neutron-starved forms of holmium (element sixty-seven) that give birth to a deformed, wobbly “football nucleus.” As you might guess from Goeppert-Mayer’s model (or from ever having watched somebody fumble during a football game), the holmium footballs aren’t very steady. And unlike atoms with misbalanced electron shells, atoms with distorted nuclei can’t poach neutrons and protons from other atoms to balance themselves. So atoms with misshapen nuclei, like that form of holmium, hardly ever form and immediately disintegrate if they do.
The nuclear shell model is brilliant physics. That’s why it no doubt dismayed Goeppert-Mayer, given her precarious status among scientists, to discover that it had been duplicated by male physicists in her homeland. She risked losing credit for everything. However, both sides had produced the idea independently, and when the Germans graciously acknowledged her work and asked her to collaborate, Goeppert-Mayer’s career took off. She won her own accolades, and she and her husband moved a final time in 1959, to San Diego, where she began a real, paying job at the new University of California campus there. Still, she never quite shook the stigma of being a dilettante. When the Swedish Academy announced in 1963 that she had won her profession’s highest honor, the San Diego newspaper greeted her big day with the headline “S.D. Mother Wins Nobel Prize.”
But maybe it’s all a matter of perspective. Newspapers could have run a similarly demeaning headline about Gilbert Lewis, and he probably would have been thrilled.
Reading the periodic table across each row reveals a lot about the elements, but that’s only part of the story, and not even the best part. Elements in the same column, latitudinal neighbors, are actually far more intimately related than horizontal neighbors. People are used to reading from left to right (or right to left) in virtually every human language, but reading the periodic table up and down, column by column, as in some forms of Japanese, is actually more significant. Doing so reveals a rich subtext of relationships among elements, including unexpected rivalries and antagonisms. The periodic table has its own grammar, and reading between its lines reveals whole new stories.
Continues...
Excerpted from The Disappearing Spoon by Kean, Sam Copyright © 2010 by Kean, Sam. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
Product details
- Publisher : Little, Brown and Company; 1st edition (July 12, 2010)
- Language : English
- Hardcover : 400 pages
- ISBN-10 : 0316051640
- ISBN-13 : 978-0316051644
- Lexile measure : 1210L
- Item Weight : 1.37 pounds
- Dimensions : 6 x 1 x 9.25 inches
- Best Sellers Rank: #57,033 in Books (See Top 100 in Books)
- #1 in Analytic Chemistry (Books)
- #39 in General Chemistry
- #166 in History & Philosophy of Science (Books)
- Customer Reviews:
About the author

Official bio: Sam Kean spent years collecting mercury from broken thermometers as a kid, and now he's a writer in Washington, D.C. His new book is The Tale of the Dueling Neurosurgeons. His first two books, The Disappearing Spoon and The Violinist's Thumb were national bestsellers, and both were named an Amazon "Top 5" science books of the year. The Disappearing Spoon was nominated by the Royal Society for one of the top science books of 2010, while The Violinist's Thumb was a finalist for PEN's literary science writing award. His work has also been featured on "Radiolab" and NPR's "All Things Considered," among other shows. You can follow him via Twitter @sam_kean, and read excerpts at http://www.samkean.com.
(un)Official bio: Sam Kean gets called Sean at least once a month. He grew up in South Dakota, which means more to him than it probably should. He's a fast reader but a very slow eater. He went to college in Minnesota and studied physics and English. At night, he sometimes comes down with something called "sleep paralysis," which is the opposite of sleepwalking. Right now, he lives in Washington, D.C., where he earned a master's degree in library science that he will probably never use. He feels very strongly that open-faced sandwiches are superior to regular ones.
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on AmazonReviewed in the United States on April 4, 2019
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
Eventually, though, they'll be old enough and canny enough to ask, "Well, how do we know all this? Where did we find these things, and how? And why are they in this order?" That's the point where you hand them The Disappearing Spoon, sit back, and let Sam Kean take over.
The story of the elements, and our understanding of them, is governed just as much by personality as by p-shells, as much by competition as by charge, as much by ego as by electrons. While the elements themselves don't pay any attention to human affairs, the quest to understand the building blocks of matter have sent us to the hearts of stars, the depths of the earth and, for various reasons, Ytterby, Sweden. [1]
Kean starts with how he got into the elements, with a story that would horrify modern-day parents: mercury. When he was a kid, his mother would collect the mercury from broken thermometers and keep it in a little bottle on a high shelf. If they were lucky, she would let her children play with it for a while, swirling it around and watching while this shiny liquid metal split apart and fused back together perfectly, never leaving a bit of itself behind. It was a metal that flowed like water, and it was fascinating. If he had known at that age that ancient alchemists thought there were spirits living in mercury, he would not have been surprised.
Keeping an eye out for mercury, he learned that modern scientists are able to follow the expedition of Lewis and Clark using mercury. The explorers carried with them a good quantity of Dr. Benjamin Rush's Bilious Pills, a "cure" for any illness that mainly contained mercury chloride. It was vile stuff, poisoning everyone who took it, but without an FDA around to stop this kind of nonsense, Rush made plenty of money. It probably didn't hurt his credibility that he was one of the signers of the Declaration of Independence. In any case, he gave samples to the Lewis and Clark expedition, and their latrine sites can still be found today by the unusually high levels of mercury that were deposited there as the men's bodies tried to get rid of the heavy metal as quickly as possible.
Mercury also taught Kean about mythology - the Roman god of communication, modeled on the Greek message-bearer. It taught him etymology - the chemical symbol for mercury is Hg, which is derived from the Latin hydragyrum, which means "silver water." It informed him on literature, especially the Mad Hatter of Alice in Wonderland, who was based on the poor crazies who used to breathe in the fumes of mercury while setting felt for their hats.
This one weird, eerie element was a door into so many other topics that he figured there must be others. And so he started work on this book, a collection of histories and tales, gossip and hearsay, all centered around the 118 physical elements that make up our universe. "As we know," he writes, "90 percent of particles in the universe are hydrogen, and the other 10 percent are helium. Everything else, including six million billion billion kilos of earth, is a cosmic rounding error." Within that rounding error, though, some amazing things have been found.
In the 19th century, the Russian Dimitri Mendeleev examined the common properties of different elements and was able to sort the elements in such a way that took advantage of their similarities. The violent alkalies along the far left, which will explode if given half a chance, and their cousins, the halogens on the far right, some of the most reactive elements in nature. Separating them are the noble gasses, which don't react with anything unless pushed to extremes. Without knowing about electron shells and the weird quantum things that happen on the atomic level, Mendeleev managed to put together a table so good that he was able to leave gaps in it that corresponded to elements that hadn't yet been found. And by telling the world that these gaps existed, the race to isolate and discover the elements was on.
Kean's book is a great look at the way science works on a human level. How the search for high-quality porcelain led to the discovery of an entire class of elements, how Marie Curie would get into trouble by dragging her (male) colleagues into dark closets to show them how radium glowed, how nitrogen kills with kindness and lithium quiets an unsettled mind. The competition to not only find these elements but to name them and find uses for them has driven science forward in all fields, from geology to neurology, for the last two hundred years. Those 118 squares on the periodic table have driven men to travel the world, to create economic and political empires, to love, to hate, and to murder.
If this kind of thing were taught in high school chemistry class, there would probably be a lot more kids interested in science as a career.
The book is very readable, even if it does drift from time to time into more technical areas. One of my colleagues, who doesn't have an extensive background in science, said she was a little slowed down by talk of electron shells and quantum jumps, which I guess were not aided by Kean's elevator similes. But it did get her asking the right questions - how do we know atoms exist if we can't see them? How can we be sure that what is in this book is true?
Those are the questions that Kean tries to answer in the book, but it's also the kind of book that may bring up more questions. It's "gateway science," one of those books that pulls away the cold, rational veneer of the scientist and his or her endeavors, and shows what an exciting, weird, messy and dramatic place science can be. What's more, it shows how science is deeply ingrained not only into our technology, but our language, history and politics. An understanding of science, even at an amateur level, is a wonderful way to open your eyes to the great, complex and bizarre world in which we live.
-----------------------------------------------------------
"We eat and breathe the periodic table; people bet and lose huge sums on it; philosophers use it to probe the meaning of science; it poisons people; it spawns wars. Between hydrogen at the top left and the man-made impossibilities lurking along the bottom, you can find bubbles, bombs, money, alchemy, petty politics, history, poison, crime, and love. Even some science."
- Sam Kean, The Disappearing Spoon
------------------------------------------------------------
[1] The town has the distinct honor of having four elements named after it: yttrium (Y), ytterbium (Yb), terbium (Tb), and erbium (Er). What has your hometown got?
"The Disappearing Spoon" is the absorbing history of the periodic table through the eyes of each chemical element. As the author so eloquently states himself, "The periodic table, is finally, an anthropological marvel, a human artifact that reflects all of the wonderful and artful and ugly aspects of human beings and how we interact with the physical world, the history of our species written in a compact and elegant script". This is science-writer Sam Kean's first book and it's a bestseller; a fantastic science book about the seldom written topic of chemistry. This 416-page book is broken out into the following five parts: Part I. Orientation: Column by Column, Row by Row, Part II. Making Atoms, Breaking Atoms, Part III. Periodic Confusion: The Emergence of Complexity, Part IV. The Elements of Human Character, and Part V. Element Science Today and Tomorrow.
Positives:
1. Great science writing, that educates the public through history and clever anecdotes.
2. Turns lead into gold, that is turns a typically dull topic like chemistry into fascinating history. Bravo!
3. Well researched book. This was an ambitious project and Kean succeeds.
4. What a fun way to learn about science.
5. Diverse stories behind every element. Some stories are scary, others hilarious, and some even strange but never dull.
6. Good use of basic chemistry to kick the book off. Carbon's "promiscuity".
7. The scientists behind the elements. The stories, the history, and what lead them to their discovery. Name-dropping at its the best, the greats in science.
8. Very happy to see many of the female scientists get their due and the unique challenges they faced.
9. Ultimately a better appreciation for the periodic table. I will never look at it the same way ever again.
10. Mendeleev the father of the periodic table. The logic used and why his version succeeded where others failed.
11. Great use of other science fields and how they converge to each element. Astronomy, physics, biology, quantum mechanics, paleontology...
12. What would life be without irony? Some of the stories behind the elements are truly mesmerizing. Wars, health, money...
13. The impact of UC Berkeley...a recurring theme.
14. Scientific mistakes that lead to great findings.
15. The most dangerous, the most stable, the most "promiscuous", the most odd, the most useful, the most blank elements are all here.
16. The creation of medical drugs. The chances, risks...
17. The names behind the elements.
18. Money and chemistry.
19. Great industrial applications. Pens, X-Rays, Aluminum...
20. Using elements to establish standards.
21. The present and future of the periodic table.
22. Great links to notes, bibliography.
23. Great reference book.
Negatives:
1. The book is overall accessible but the few technical aspects of chemistry does exceed the layperson.
2. The book could have used more charts and illustrations to assist the reader.
3. The technical part of the book was weak. I thought the author could have spend more time even as an appendix to provide a better understanding on bonding and how molecules form. In other words, use the appendix as a technical supplement in order to keep the narrative clean.
In summary, I really enjoyed this and very satisfied to have selected this book as my chemistry choice. I've read a number of books on evolution, physics, astronomy, neuroscience, general science but very few about strictly chemistry. So what better book to read about chemistry than one about the history of the Periodic Table and its elements. What sets this book apart from your standard issue science book is the story-telling ability from young author Sam Kean and the interesting history behind the evolution of the Periodic Table. Each element has a story to tell and Kean provides us the most interesting tidbits and in doing so not only gives life to what usually is a dull topic but enlightens and educates the public as well. I highly recommend it!
Further suggestions: " Science Matters: Achieving Scientific Literacy " by Robert M. Hazen, " For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics " by Walter Lewin, " Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 " by Michio Kaku, " The Universe Inside You: The Extreme Science of the Human Body From Quantum Theory to the Mysteries of the Brain " Brian Clegg, " Lies, Damned Lies, and Science: How to Sort Through the Noise Around Global Warming, the Latest Health Claims, and Other Scientific Controversies " by Sherry Seethaler, " The Grand Design " by Stephen Hawking, " A Short History of Nearly Everything " by Bill Bryson, " A Universe from Nothing: Why There Is Something Rather than Nothing " by Lawrence M. Krauss, " The Age of Everything: How Science Explores the Past " by Mathew Hedman, " Why Evolution Is True " by Jerry A. Coyne and "The Quantum Universe (And Why Anything That Can Happen, Does)" by Bryan Cox.
Top reviews from other countries
On most pages there's an instance where he's used one word but means another. E.g., he writes of the "bridges between our physical bodies and our incorporate minds." That one's easy, he means incorporeal. Incorporate isn't even an adjective; it's a verb. In something like, "Mendeleev's craw knew of a particularly intractable exception in the [periodic] table." Here he just doesn't know what craw means, and you can kinda tell what he means but the metaphor is clumsy. "The further you burrow down and parse electrons [...], the fuzzier they seem." By parse it looks like he means 'experimentally investigate the behaviours of'. It's like he wanted to jzeush up his prose by picking one word in each second paragraph and replacing it with a random thesaurus lookup. It's so painful to read! I'm going to persevere because I like the science he's writing about but this lousy editing is jarring. I'm finding something like this on every second page of my Kindle.
The publisher is Penguin Random House so they should know better than to publish a book that hasn't been edited or edited so carelessly. This book is turning me into a curmudgeon! Grrrr.
Lumping all the footnotes together at the end of the book effectively means they won’t be read, depriving the reader of what could have been interesting additional comment. At least the author uses the correct spelling of Aluminium (and goes on to explain why the US spells it differently).
Frustrating tosh, utlimately narrow in scope and nothing like as disconnected and researched as it could have been
It has got a vast amount of curious and scientifically interesting facts and gives a profound insight into the lives of many scientists, not only talking about their main discoveries, but also describing their social interactions and their growing up in a sort of story-telling way that makes each page so interesting!
You will be able to learn about the discovery of the elements and will also learn so many fun facts about them! Did you know that berillium has a sweet taste that resembles that of sugar?
The book also goes into such diverse topics as nuclear physics and toxicology, always linking an element to an event in history!
So, if you're looking for a really interesting scientific book, then do buy this one!














