Enjoy fast, FREE delivery, exclusive deals and award-winning movies & TV shows with Prime
Try Prime
and start saving today with Fast, FREE Delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Instant streaming of thousands of movies and TV episodes with Prime Video
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
$19.76$19.76
FREE delivery: Wednesday, July 12 on orders over $25.00 shipped by Amazon.
Ships from: Amazon Sold by: Mesom Book
Buy used: $9.26
Other Sellers on Amazon
FREE Shipping
96% positive over last 12 months
FREE Shipping
98% positive over last 12 months
FREE Shipping
100% positive over last 12 months
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required. Learn more
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Endless Universe: Beyond the Big Bang Hardcover – May 29, 2007
| Price | New from | Used from |
Purchase options and add-ons
Two world-renowned scientists present an audacious new vision of the cosmos that “steals the thunder from the Big Bang theory.” —Wall Street Journal
The Big Bang theory—widely regarded as the leading explanation for the origin of the universe—posits that space and time sprang into being about 14 billion years ago in a hot, expanding fireball of nearly infinite density. Over the last three decades the theory has been repeatedly revised to address such issues as how galaxies and stars first formed and why the expansion of the universe is speeding up today. Furthermore, an explanation has yet to be found for what caused the Big Bang in the first place.
In Endless Universe, Paul J. Steinhardt and Neil Turok, both distinguished theoretical physicists, present a bold new cosmology. Steinhardt and Turok “contend that what we think of as the moment of creation was simply part of an infinite cycle of titanic collisions between our universe and a parallel world” (Discover). They recount the remarkable developments in astronomy, particle physics, and superstring theory that form the basis for their groundbreaking “Cyclic Universe” theory. According to this theory, the Big Bang was not the beginning of time but the bridge to a past filled with endlessly repeating cycles of evolution, each accompanied by the creation of new matter and the formation of new galaxies, stars, and planets.
Endless Universe provides answers to longstanding problems with the Big Bang model, while offering a provocative new view of both the past and the future of the cosmos. It is a “theory that could solve the cosmic mystery” (USA Today).
- Print length304 pages
- LanguageEnglish
- PublisherDoubleday
- Publication dateMay 29, 2007
- Dimensions6.5 x 1 x 9.5 inches
- ISBN-100385509642
- ISBN-13978-0385509640
The Amazon Book Review
Book recommendations, author interviews, editors' picks, and more. Read it now.
Frequently bought together

What do customers buy after viewing this item?
- Lowest Pricein this set of products
The Universe Within: From Quantum to Cosmos (The CBC Massey Lectures)Paperback - Highest ratedin this set of products
The Second Kind of Impossible: The Extraordinary Quest for a New Form of MatterPaul SteinhardtPaperback - Most purchasedin this set of products
The Biggest Ideas in the Universe: Space, Time, and MotionSean CarrollHardcover
Editorial Reviews
From Publishers Weekly
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.
From Booklist
Copyright © American Library Association. All rights reserved
Review
—Sir Martin Rees, Astronomer Royal and President of the Royal Society, author of Before the Beginning
“Paul Steinhardt and Neil Turok, two architects of modern cosmology, have written an accessible and engaging account of their exciting new theory of cosmic origins. Should their approach someday be confirmed, it would result in a major upheaval to our understanding of how everything—space, time, and matter—came to be.” —Brian Greene, author of The Elegant Universe and The Fabric of the Cosmos
"For the past twenty years, the combination of the big bang theory plus inflation has offered cosmologists an unbeatable one-two knockout punch . . . But the standard model finally has a worthy challenger."
—Robert Naeye, Mercury
“Perhaps you don’t believe in strings, or extra spatial dimensions, or D-branes, or that the universe’s accelerated expansion may someday reverse. But I urge you to suspend such views and read Steinhardt and Turok’s dramatic and very readable account of their cyclic model of the universe. It may well be closer to truth than you think!”
—Sir Roger Penrose, Rouse Ball Professor of Mathematical Physics at Oxford University, author of The Emperor’s New Mind and The Road to Reality: A Complete Guide to the Laws of the Universe
“The authors manage to make complicated concepts such as the cosmic microwave background understandable.”
—The Wall Street Journal
“Steinhardt and Turok are eloquent in describing how theoretical physicists puzzle through cosmic problems.”
—Laurence Marschall, Discover
About the Author
PAUL J. STEINHARDT is the Albert Einstein Professor in science and on the faculty of the departments of physics and astrophysical sciences at Princeton University. NEIL TUROK holds the Chair of Mathematical Physics in the department of applied mathematics and theoretical physics at Cambridge University.
Excerpt. © Reprinted by permission. All rights reserved.
He was moving through a new order of creation of which few men ever dreamed. Beyond the realms of sea and land and air and space lay the realms of fire, which he alone had been privileged to glimpse. It was much too much to expect that he would also understand.
—Arthur C. Clarke, 2001: A Space Odyssey
Two boys sit in darkened cinemas, one in London and one in Miami, set to watch Stanley Kubrick's movie 2001: A Space Odyssey. It is 1968, a year of worldwide conflict and turmoil: Vietnam, the arms race, political assassinations, student protests, and rebellions. But all this is forgotten as the film sweeps the boys along in a glorious tale of science, space, and the future.
The boy in Miami witnessed firsthand the awesome power of technology to annihilate or inspire. Six years earlier, from his home near Homestead Air Force Base, he watched missiles being prepared for a strike on Cuba, knowing that his family and community would be obliterated if the looming crisis led to a nuclear exchange. Then, as the crisis subsided, he became galvanized by John F. Kennedy’s promise to send a man to the Moon by the end of the decade. He emerged from these early experiences optimistic about the power of technology to improve the future and fascinated by all things scientific. He kept logbooks of every manned mission and traveled often to Cape Canaveral to observe the launches. He turned the family garage into a laboratory with large stocks of chemicals and biological specimens. And he headed to the Everglades at night, avoiding the city lights and fending off mosquitoes, to take a peek at the heavens through his telescope.
The boy in London was a refugee from South Africa, where his parents had been imprisoned for resisting the oppressive apartheid regime. But he too was optimistic, having seen the determination of people like Nelson Mandela to build a better future. Upon his parents’ release, the family had left South Africa for Kenya and then Tanzania, new countries full of natural wonders—the Serengeti’s wild animals and the Olduvai Gorge, home of the earliest humans. Under the hot African sun the boy had learned mathematics and science from spirited young teachers. He’d built electric motors, made explosions, and watched ant lions for hours. In 1968 his family had moved to England for the sake of the children's education, arriving in time to watch the Apollo moon landings on TV.
As young children, both boys had acquired their passion for science from their fathers. Each night, the father in America told stories to his little boy of Marie Curie, Louis Pasteur, and other great discoverers. The father in Africa patiently explained the Pythagorean theorem and spoke of the great achievements of ancient Greek science. Their words were like water on seeds, feeding insatiable curiosities. How does the world work? How did it start out? Where is it headed? The boys asked the same questions that have gripped people from every society, every culture, every religion, and every continent since civilization began.
Kubrick’s film speaks of a time in the foreseeable future when people will devote their skills and resources to uncovering the secrets of the universe. A space mission is dispatched to investigate a powerful signal emanating from one of Jupiter’s moons. Technology, in the form of the computer HAL, threatens to end the mission, but human ingenuity and adaptability win out. A lone surviving astronaut arrives to find a giant monolith, appearing like a solid rock two thousand feet high. As he approaches, he realizes that it’s actually the opening of an infinite shaft, drawing him into a transdimensional trip through hyperspace and revealing the creation and the future of the universe. Watching the film, neither boy realizes how prophetic this story might be.
A Real Space Odyssey
Fast–forward to the real 2001: rather than a lone astronaut, a worldwide community of cosmologists engaged in an intense effort to understand the beginning of the universe. The two of us, now grown, are thrilled to be among them. The boy in Miami, Paul Steinhardt, is now a professor of mathematical physics at Princeton University. The boy in London, Neil Turok, is a professor of physics at Cambridge University in England. Each of us, following his own path, has pursued his dream of becoming an explorer of the universe, albeit with paper and pencil instead of a rocketship. Three years have passed since the two of us joined forces on a risky venture to investigate a new, transdimensional view of space and time that challenges the conventional history of the universe.
Cosmologists celebrate 2001 as the year the U.S. National Aeronautics and Space Administration (NASA) launched a satellite mission from Cape Canaveral to investigate not the black monolith of Kubrick’s film but a thin, dark layer of space at the outermost edge of the visible universe. The mission is called WMAP (pronounced “W-map,”), which stands for Wilkinson Microwave Anisotropy Probe. On board is a bank of highly sensitive detectors designed to gather some of the ancient light emitted from the dark layer nearly 14 billion years ago, at a time when the first atoms were just beginning to form. Every 2.2 minutes, the satellite spins once around its axis, and every hour the axis itself traces out a circle. From the combination of motions, light from a narrow ring on the sky is collected. Over the course of six months, the entire satellite keeps shifting, until the detectors have covered the entire sky. The sequence will be repeated every six months until enough light has been gathered to make a detailed portrait of the infant universe. (WMAP is a follow–up to the pioneering NASA satellite launched in 1989 called COBE, the Cosmic Background Explorer, which had made an initial low–resolution image of the early universe; in 2006, the leaders of the COBE team, John Mather at the NASA Goddard Space Flight Center and George Smoot at the University of California at Berkeley, were awarded the Nobel Prize in Physics.)
Nineteen months after the WMAP launch, in February 2003, mission head Charles Bennett and his team had collected and analyzed sufficient light to announce their initial findings at NASA’s Washington headquarters, in a press conference broadcast throughout the world. One of us watched in an auditorium at Princeton University, overflowing with what seemed like everyone in town, from mailroom clerks to middle–school students, drawn by rumors of a great new discovery. The other was in a similarly packed lecture room in Cambridge, England. The sense of anticipation was tremendous, each crowd aware that its understanding of the origin and evolution of the universe would hinge on what the WMAP team had found.
At last, Bennett and his team unveiled the image that had emerged after a yearlong exposure. Just like the fictional astronaut peering into the monolith, the WMAP satellite had gazed into the primordial layer and obtained the first clear view of the infant universe. What the greatest thinkers in history—from Plato to Newton to Einstein—could only speculate about was suddenly there for all to see, bringing humanity closer to answering the ultimate question: Where did it all come from?
At the end of the broadcast, world-renowned astrophysicist John Bahcall summarized the sentiments of the scientists watching: “Every astronomer will remember where he or she was when they first heard the WMAP results. For cosmology, the announcement today represents a rite of passage from speculation to precision science.” Bahcall’s point was that not only are the measurements marvelously accurate, but they are also in astonishing agreement with what cosmologists had been expecting.
By the time of the WMAP announcement, most scientists had come to accept a cosmological theory known as the inflationary model of the universe. In scientific discussions, “model” is often used to mean “theory,” especially cases where the idea includes aspects that are qualitative or incomplete. The inflationary model, as the term is used today, refers to a combination of three concepts: the hot big bang model, developed in the early twentieth century; the inflation mechanism, introduced in the 1980s; and the dark energy hypothesis, added in the 1990s.
In this picture, the big bang itself is not explained. It is simply imagined that space and time emerged somehow. Next, it is assumed that just after the bang, a small region of the universe underwent a dramatic process called inflation, during which it expanded a googol (10 raised to the 100) times or more within a billionth of a billionth of a trillionth (10 raised to the negative 30) of a second. Once this period of inflation ended, the energy causing the inflation was transformed into a dense gas of hot radiation. The gas cooled and the expansion slowed, allowing atoms and molecules to clump into galaxies and stars. This picture of an inflationary universe was originally conceived in the 1980s and is now presented in many textbooks. However, recent astronomical discoveries have led to a major amendment to the story—that 9 billion years after the big bang, a mysterious force called dark energy took over and started to accelerate the expansion again. In the standard picture, the expansion of the universe will accelerate forever, turning all of space into a vast and nearly perfect vacuum.
Both of us had been cosmologists for over two decades by the time of the WMAP announcement, and each had played a part in building the case for the leading view of the universe. In the 1980s, Paul was one of the architects of the original inflationary theory. A decade later, he and his Princeton University colleague Jeremiah Ostriker were among the first to incorporate dark energy into the big bang model. They showed that, assuming a particular mixture of matter and dark energy today, it is pos...
Product details
- Publisher : Doubleday; First Edition (May 29, 2007)
- Language : English
- Hardcover : 304 pages
- ISBN-10 : 0385509642
- ISBN-13 : 978-0385509640
- Item Weight : 1.2 pounds
- Dimensions : 6.5 x 1 x 9.5 inches
- Best Sellers Rank: #1,615,067 in Books (See Top 100 in Books)
- #1,561 in Cosmology (Books)
- Customer Reviews:
About the author

Discover more of the author’s books, see similar authors, read author blogs and more
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on Amazon-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
This book is written in a casual style and mentions how the authors first got the idea for their theory while they were both attending a lecture on the overview of string theory. They both went up to the speaker after his talk and asked him questions about strings and branes. Later the authors met at a small physics conference in Finland and started to work out the details their theory. The book describes the various questions that must be overcome such as flatness and thermodynamics. In the past various cyclic models of the universe have been proposed but they were later shown to have flaws. In careful precise wording they explain how they were able to overcome all the previous questions with their new model.
As expected they describe very well the inflationary model since the book compares the two models closely. One of the main differences being that their model has small if any primordial gravitational waves which have been in the news since March 2014 because of the BICEP2 cosmic microwave radiation data which initially claimed to have observed these gravitational waves to only latter say that their results could also be explained by galactic dust. The physics community awaits further data on this subject.
Steinhardt has been a public vocal critic of inflation going so far to say that it isn't even science since one can get just about any prediction from the theory since it is so general in nature. This is also discussed in the book.
My disagreement with the theory is that it is based on string theory and brane theory. There have been no experimental tests that have every shown that string and brane theory have anything to do with reality. There are two wonderful books that show the problems with string theory. They are Lee Smolin's "The Trouble with Physics" and Peter Woits "Not Even Wrong". If anything since this book was written string theory has lost some of the luster it had back in 2007. Nevertheless I would recommend this book since it is quite educational and very well written.
Top reviews from other countries
Most of their thinking is presented rather clearly and cleverly. Some passages feel a bit out of place but the overall book stands quite well together.
In all honestly, I was not fully convinced with the theory and found out that there are still far too may gaps. I had the feeling sometimes that the book was perhaps issued far too early maybe in the optic of coining a name for the writer or claim possession. the world of science being so ruthless that its would not be a surprise.
The authors themselves acknowledge that there is still a lot to prove. Apparently, some mechanisms of the theory are still pretty drafty and unexplained.
Nevertheless, I see the brane collision as a rather seductive and simple idea.
The good thing is that it shows the weak point of the inflation theory in quite a lot of details which is not done in many other books.
Perhaps our scientists are too afraid of acknowledging that the inflation theory is still perhaps not the definite answer.
A good number of photos and diagrams help to make the book readable and keep the reader focused.
Overall, an interesting book. Its up to the reader to be let convinced by their arguments.
These guys are top physicists with great ideas
Highly readable and current
ps several physicists (Brian Greene and Stephen Hawking to name two megastarguys have supported its proofing etc)
Buy it you will not be disappointed



