Buying Options
| Digital List Price: | $15.99 |
| Kindle Price: | $11.99 Save $4.00 (25%) |
Your Memberships & Subscriptions
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required. Learn more
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Genentech: The Beginnings of Biotech (Synthesis) Kindle Edition
| Price | New from | Used from |
|
Audible Audiobook, Unabridged
"Please retry" |
$0.00
| Free with your Audible trial | |
|
Audio CD, CD, Unabridged
"Please retry" | $28.05 | — |
Drawing from an unparalleled collection of interviews with early biotech players, Sally Smith Hughes offers the first book-length history of this pioneering company, depicting Genentech’s improbable creation, precarious youth, and ascent to immense prosperity. Hughes provides intimate portraits of the people significant to Genentech’s science and business, including cofounders Herbert Boyer and Robert Swanson, and in doing so sheds new light on how personality affects the growth of science. By placing Genentech’s founders, followers, opponents, victims, and beneficiaries in context, Hughes also demonstrates how science interacts with commercial and legal interests and university research, and with government regulation, venture capital, and commercial profits.
Integrating the scientific, the corporate, the contextual, and the personal, Genentech tells the story of biotechnology as it is not often told, as a risky and improbable entrepreneurial venture that had to overcome a number of powerful forces working against it.
- LanguageEnglish
- PublisherUniversity of Chicago Press
- Publication dateSeptember 21, 2011
- File size6230 KB
-
Next 3 for you in this series
$58.98 -
Next 5 for you in this series
$107.09 -
All 20 for you in this series
$533.90
Customers who viewed this item also viewed
Editorial Reviews
Review
“[A]n important addition to the history of biotech.” -- Phillip A. Sharp, Massachusetts Institute of Technology ― Nature Medicine
“Over the past 20 years Sally Smith Hughes has done a great service to science studies by conducting in-depth oral-history interviews with prominent scientists, venture capitalists, corporate leaders, and attorneys in the history and business of early biotechnology. She drew on her unprecedented access to corporate records and a large number of actors and their oral histories to write Genentech, the first comprehensive account of the creation and early development of the Genentech Corporation.”
-- Doogab Yi ― Chemical Heritage Magazine
“The author skillfully reveals the practical, day-to-day, hands-on roles played by venture capitalists focused on fiscal gain and scientists focused on scientific breakthroughs. . . . [A] fascinating read.” -- Valerie McGurk ― Nursing Standard
“[A]n eminently readable (and, for classes, eminently assignable) story . . . . Smith Hughes is one of the foremost oral historians of science today, and Genentech is filled with illuminating interview snippets woven artfully into a narrative that both engages and (somewhat surreptitiously) analyzes. . . . [F]or a case study that lays out in lively detail the ambiguities and exuberances of high-tech entrepreneurship, Smith Hughes’s Genentech surely ranks among the very best.” -- Cyrus C. M. Mody, Rice University ― Bulletin of the History of Medicine
“[A] fascinating book, vividly recount[ing] the blood, sweat, and tears of the early days of ‘genetic engineers’ working at the bench, designing new biomolecules, and capitalizing their promises on Wall Street.” ― Social History of Medicine
“Genentech: The Beginnings of Biotech paints a wonderfully detailed picture of an important beginning in the history of biotechnology.” -- Nathan Crowe, Arizona State University ― Journal of the History of Biology
“Hughes’s Genentech makes an invaluable international contribution to understanding how a period just short of a decade redefined ‘business as usual’ for biologists.” -- Lisa Onaga, Nanyang Technological University ― Technology and Culture
"Sally Smith Hughes skillfully describes the improbable creation, difficult adolescence, immense prosperity, and eventual foundering of Genentech, the first biotech behemoth. It’s a great tale, with a cast of fabulous characters and surprising episodes, ranging from Palo Alto to Wall Street. This is an outstanding book that should appeal to Nobel laureates as well as hedge-fund barons and ordinary citizens.”
-- Daniel S. Greenberg, author of Science for Sale and Tech Transfer“Drawing extensively on oral histories, Hughes reveals the day-to-day hands-on roles of both the venture capitalists and the scientists, their eyes fixed at once on scientific triumphs and corporate riches, who brought Genentech to life. Hughes vividly recounts the tough-minded deals, buccaneering strategies, laboratory struggles, and relentless patent arrangements that not only made for Genentech’s success but that pioneered the new biotechnology industry’s operational model.” -- Daniel Kevles, Yale University
“Sally Smith Hughes’s book on the formative years of Genentech helps fill a gaping hole in the history of biotechnology, as it grew out of the recombinant DNA technology in the 1970s and 1980s. This book covers the quake from its epicenter. It draws on two decades of research, thousands of conversations, hundreds of documents, and dozens of oral history interviews. This zippy read will be welcomed by those who care about the San Francisco Bay area, biotechnology, the history of molecular biology, and high-tech economic development. Genentech has long had its legends, statues, buildings, and view of Candlestick Park; now it has a book about its beginnings.” -- Robert Cook-Deegan, Duke University
“My first job out of my postdoc was at Genentech in early 1981. At the time, I had no idea that all those guys in suits were doing something that had never been done before. But I did know the science was amazing—and Bob Swanson was the clear leader in creating an environment that supported that science. Sally Smith Hughes has brought to life the details of what the key players were up to—they weren’t playing it safe, and they created a catalytic environment that generated a whole new industry.” -- Cynthia Robbins-Roth, author of From Alchemy to IPO --This text refers to an out of print or unavailable edition of this title.
Excerpt. © Reprinted by permission. All rights reserved.
Genentech
The Beginnings of BiotechBy SALLY SMITH HUGHESThe University of Chicago Press
Copyright © 2011 The University of ChicagoAll right reserved.
ISBN: 978-0-226-35918-2
Contents
PROLOGUE..................................................................ixACKNOWLEDGMENTS...........................................................xiii1 / INVENTING RECOMBINANT DNA TECHNOLOGY..................................1Two Scientists on Converging Paths........................................2The Collaboration.........................................................11Patenting and Politics....................................................20Steps toward Commercialization............................................242 / CREATING GENENTECH....................................................29Bob Swanson...............................................................29Founding Genentech........................................................34Legal and Political Obstacles.............................................44A Full Business Plan......................................................473 / PROVING THE TECHNOLOGY................................................49A Portentous Experiment...................................................50Switching Targets.........................................................52Negotiating Research Agreements...........................................55Making Somatostatin.......................................................59Wider Issues..............................................................664 / HUMAN INSULIN: GENENTECH MAKES ITS MARK...............................75Seeking Corporate Contracts...............................................76Procuring a Facility and Staff............................................77Genentech's Human Insulin Project.........................................86The Eli Lilly Contract....................................................94Publicity and Expansion...................................................985 / HUMAN GROWTH HORMONE: SHAPING A COMMERCIAL FUTURE.....................107Competing for Human Growth Hormone........................................108Moving toward Corporate Integration.......................................120Scaling Up Insulin and Growth Hormone.....................................122Corporate Expansion.......................................................127An Emerging Culture.......................................................1316 / WALL STREET DEBUT.....................................................137Biomania..................................................................137Exit Strategies...........................................................139Interferon: The New Wonder Drug?..........................................142Run-Up to an Initial Public Offering......................................146Legal Impediments.........................................................148The IPO...................................................................158EPILOGUE..................................................................165Notes.....................................................................171Bibliography..............................................................195Oral History Bibliography.................................................203Index.....................................................................207Chapter One
Inventing Recombinant DNA TechnologyI looked at the first gels [in the first recombinant DNA cloning experiment], and I can remember tears coming into my eyes, it was so nice. I mean, there it was. You could visualize your results in physical terms, and after that we knew we could do a lot of things. Herbert W. Boyer, March 28, 1994
Modern biotechnology originated in 1973 with the invention of recombinant DNA technology, a now-universal form of genetic engineering. It entails recombining (joining) pieces of DNA in a test tube, cloning (creating identical copies of DNA) in a bacterium or other organism, and expressing the DNA code as a protein or RNA molecule. It soon vastly extended the power and scope of molecular biology, penetrated several industrial sectors, and became a cornerstone of a new industry of biotechnology. Yet technological power and potential cannot alone explain its first commercial application—at the biotechnology company Genentech in the mid-1970s. Stanley Cohen and Herbert Boyer, the two inventors, had designed the technique for basic-science research. But they immediately foresaw its practical applications in making plentiful quantities of insulin, growth hormone, and other useful substances in bacteria. Despite their common starting point, Cohen and Boyer chose different avenues for industrializing recombinant DNA technology. Why they did so was a matter of personality and professional commitments. It was also a matter of the national environment in the U.S. of the 1970s—a pivotal decade of raging debate in science politics, major dilemmas and decisions in constitutional and patent law, and cultural, attitudinal, and personal challenges as commercial interests first entered molecular biology full force.
TWO SCIENTISTS ON CONVERGING PATHS
Herbert Wayne Boyer was born in 1936 into a blue-collar family and grew up in the little town of Derry, thirty miles from Pittsburgh in the coalmining country of western Pennsylvania. His father had left school in eighth grade and eventually found work as a railroad brakeman and conductor. His mother married straight out of high school and stayed home to look after Herb and a younger sister. Herb earned pocket money by mowing lawns, delivering newspapers, and doing other odd jobs of a middle-American boyhood. He hunted and fished with his father and developed an abiding love of the outdoors. All four Boyers played at least one musical instrument and regularly got together with family and friends to play country-western music—bright spots in an otherwise workaday world. Herb's first years at Derry Borough High School were a steady round of football, basketball, baseball, and girls—anything but academic achievement. He was on "a rather perilous course of delinquency," 2 he later admitted. It took a no-nonsense football coach and teacher to jolt Herb out of his apathy. "Pat Bucci straightened me out," he subsequently observed. He began belatedly to focus on schoolwork. Coming into his own, he was elected junior- and senior-class president and voted most athletic. But the limited vistas of a small railroad town felt more and more confining. One way or another, he had to get out. Herb resolved to go on to college, the first in his family to do so. He was off to troll wider horizons but destined never to lose the down-to-earth practicality and lack of pretension of his blue-collar upbringing.
Stanley Norman Cohen is also the first child and only son of parents whose formal education ended with high school. His father was a small businessman who tried his hand, never very successfully, at several trades in and around their home in Perth Amboy, New Jersey, a town just southwest of New York City. Stan's mother worked for a time as a secretary to make ends meet. Stan was born in 1935 and raised as an only child until the birth of a sister when Stan was almost ten. Tight finances, gentle discipline, and parental ambition for their children to rise in the world largely defined home life. While Boyer needed Coach Bucci's intervention to provoke his attention to schoolwork, learning came naturally and at an early age for Cohen. No adult had to build discipline in young Stan. "I suppose," he recalled, "that overall I wasn't much of a wayward kid, so there really wasn't a lot of need for discipline." He and his father, a frustrated inventor, spent off-hours in the basement doing small wiring and mechanical projects. Cohen credits his father with sparking his interest in how things work—sparking his interest in science. From the start he was motivated to achieve, and achieve he consistently did. In high school he was editor of the school paper and associate editor of the yearbook. By then his scientific interests centered on biology, which to Stan meant becoming a physician. He now had a goal that would move him beyond the narrow scope of his upbringing. Yet he would remain stamped with the work ethic, professional ambition, and respect for knowledge of his Jewish heritage.
Boyer and Cohen, with only slightly more than a year between them, came of age in the early 1950s. Both were financially strapped; both could expect no financial assistance from their families; both chose colleges close to home. In 1954 Boyer entered Saint Vincent College, a liberal-arts institution run by Benedictine monks in Latrobe, Pennsylvania, a few easy miles from Derry. He lived at home to save money and hitchhiked or rode the bus to and from classes. His father, a railroad man, refused to learn to drive, let alone to buy a family car. Boyer majored in biology and chemistry, intending to go on to medical school. A chance class assignment suggested another direction. More than five decades later, Boyer recalled the shift with the clarity of a formative moment:
We had a brand-new, shiny [cell physiology] textbook with a blue and white cover. Each of us was assigned a chapter, and we had to give a seminar on it. Which one did I get? "The Structure of DNA." This was 1957, and the buzz of DNA was just getting into the textbooks.... I was really taken with the Watson-Crick structure of DNA and this started my fascination with the heuristic value of the structure.
A sign of his new infatuation was Boyer's Siamese cats, Watson and Crick. In 1958 Saint Vincent awarded Boyer a bachelor's degree in biology and chemistry.
Boyer applied and failed to enter medical school, a D in metaphysics being his nemesis. He settled on graduate school at the University of Pittsburgh, partly to improve his grades and reapply to medical school, partly because "a small-town boy doesn't stray too far from home." He craved intellectual stimulus and found it in the heady research of a bacterial genetics laboratory at a watershed moment in molecular biology. Watson and Crick's discovery of 1953 had launched an avalanche of work on major questions—prime among them, the nature of the genetic code and the mechanism of protein synthesis. Much of this research transpired in bacteria, employed by experimentalists for their relative simplicity as compared to the animal kingdom. Boyer thrived on the lab's scientific ferment and freeform discussion on genetic exchange and recombination in bacteria. "That [lab]," Boyer recalled, "was my [scientific] awakening."
In 1959, at the end of his first year of graduate school, Boyer married his high school sweetheart, Marigrace Hensler, a biologist in her own right. She gamely supported the couple, as Boyer tackled a nearintractable experiment on deciphering the genetic code. Breaking the code was the foremost problem in molecular biology of the day, one that only a supremely ambitious—or naive—graduate student would agree to take on. Boyer did and plugged away, even after two biochemists broke the code in 1961. "Boyer," a future colleague commented, "consistently tried big things without knowing whether they could or should work." He managed to squeeze out enough data to complete a dissertation. His attraction to challenging problems would become a mark of his professional career. Boyer was setting an enduring pattern. Below the casual surface lay ambition and tenacity. In 1963 Boyer earned a doctoral degree in bacteriology.
Cohen chose Rutgers University, a few short miles from Perth Amboy. Rutgers offered the most scholarship support and was close to his ailing father. Studious as ever, Cohen worked hard but carried to extremes his resolve to make a life beyond academics. He joined the university debating team, took up the guitar, and tried his hand at writing pop songs, one of which reached the hit parade. This flurry of extracurricular activities, predictive in its intensity, failed to dent his academic performance. In 1956 he graduated magna cum laude from Rutgers. That fall Cohen entered medical school at the University of Pennsylvania, a major draw being the substantial scholarship funds it provided. His first taste of basic research in the second year led to a summer research position in London and to the publication of his first paper. He took time off that summer to wander the cafés of Europe, supporting himself by singing and strumming the banjo. "It was a wonderful time," he recalled, remembering the freedom and lack of responsibility. Life from then on would never again be as carefree, but banjo and song would remain outlets for life. In 1960 Cohen graduated from Penn with a degree in medicine. Within a whirlwind five-year period, swinging from the East Coast to the South, Cohen completed an internship, a two-year research position at the National Institutes of Health (NIH), and a residency in medicine. In 1961 he married Joanna Wolter, and they eventually had two children.
Boyer's career took a less peripatetic course. He went straight from Pittsburgh to Yale as a postdoctoral fellow in microbiology. There he joined a lab focused on genetic exchange and recombination in bacteria. He became fascinated with the restriction enzymes of bacteria—enzymes that cut up and destroy foreign DNA entering the bacterial cell. The word just emerging in the 1960s was that certain types of restriction enzymes sever DNA at unique sequences in the molecule. Perhaps, Boyer and others recognized, one could use these strange enzymes to clip DNA into well-defined fragments and map its structure. He suspected early on that restriction enzymes were going to be "very helpful enzymes" for the precision cutting, recombination, and characterization of DNA. The suspicion was prophetic: his career-long passion would become restriction enzyme research and genetic manipulation. Boyer now lived and breathed his science. After a night on the town, he would return to the lab or rise in the dark to observe an experiment. But the folks at home were stymied. "What are you doing?" his father would ask. "Restriction endonuclease modification," he would glibly answer, using the technical term for his research area. He would then pause for his father's inevitable retort, "Well, what good is it? What are you going to do with that?" Boyer would respond, "I don't know—cure the common cold." His answer was dismissive, but his father's question prompted him to ponder the practical utility of his research.
Cohen meanwhile had begun a postdoctoral research fellowship (1965–67) in molecular biology at Albert Einstein College of Medicine in New York. It was here he stopped wavering between a career in medicine or science. He decided to pursue both, apparently expecting the rewards of a dual career to outbalance its tensions and frantic pace. He took up research on plasmids, tiny rings of DNA in the cytoplasm of bacterial cells that reproduce outside the main chromosome. Plasmids typically carry antibiotic resistance genes that can pass from one bacterium to another, spreading the resistance problem. The study of plasmids was at the time a quiet backwater and to Cohen consequently appealing. Scientists interested in genetic exchange and gene regulation mainly studied viruses, which had been a central focus of molecular studies from the 1930s on. Cohen reasoned that his heavy clinical responsibilities would make successful competition with "hotshot" molecular biology labs difficult if not impossible. Plasmid research seemed a perfect fit: he knew the necessary molecular and biochemical techniques, and the growing medical problem of antibiotic resistance was an appropriate topic for a physician. He was correct in every regard except for expecting the field to remain tranquil. It was about to explode, and Cohen would find himself at its epicenter.
By 1968 Cohen was intent on finding a faculty position. One of his mentors had collegial associations with several members of the biochemistry department at Stanford University. The connections led to a job offer, but not in biochemistry. Some years earlier, the clinical departments at Stanford Hospital in San Francisco had moved south to join the preclinical departments on Stanford's Palo Alto campus—a reorganization aimed at bringing basic science and clinical medicine into geographic and intellectual proximity. Recognizing Cohen as one of a new breed of physician-scientists the school sought to attract, the Department of Medicine offered Cohen an assistant professorship in its Division of Hematology. Cohen, drawn by the California climate and lifestyle, accepted and in 1968 moved with his wife to the sun-swept campus in Palo Alto.
He was disheartened to find that no one in the department shared his fascination with molecular genetics. He turned for advice to Arthur Kornberg, the powerful chairman of Stanford's biochemistry department. By virtue of his Nobel Prize, academic position, and forceful personality, Kornberg was a figure to reckon with. Not one to mince words, he told Cohen that plasmid research was an uninteresting line of investigation. The irony of the remark would soon become apparent. "So this wasn't a very comforting introduction to Stanford," Cohen recalled. His understatement skated over what must have been an unsettling blow: he had come to Stanford considering that shared scientific interests and collegial ties might lead to a joint appointment in the Department of Biochemistry. Instead, Kornberg made it clear that Cohen's association with the department was at best to be informal. Kornberg almost never granted joint appointments and also believed that only a rare individual could optimally perform both clinical medicine and basic research. Despite the tepid welcome and even after his own lab was operating, Cohen, according to biochemist Paul Berg, "hung around in [the Department of] Biochemistry most of the time."
Berg exaggerated, but Cohen indeed thrived on the department's stimulating intellectual exchange and had access to its electron microscope and other equipment lacking in his home department. He regularly attended biochemistry seminars and benefited from the chance "to bounce ideas off people in that department." He particularly profited from discussing ongoing departmental research on DNA ligation (joining) and DNA uptake by animal cells. In turn, he shared with biochemistry colleagues his work on plasmid isolation and characterization. But the research Cohen published in the early 1970s was not done in collaboration with Stanford biochemistry faculty. As he stated forcefully in 2010: "Notwithstanding Kornberg's notion that all important scientific knowledge at Stanford originated in the Department of Biochemistry, the work on DNA replication in that department had absolutely zero impact on my research. Similarly, the work on biochemical methods of dAT joining"—a biochemical method for joining DNA fragments—"by Berg and others did not impact my work."
(Continues...)
Excerpted from Genentechby SALLY SMITH HUGHES Copyright © 2011 by The University of Chicago. Excerpted by permission of The University of Chicago Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
About the Author
Sally Smith Hughes is a historian of science at the Bancroft Library at the University of California, Berkeley. She is the author of The Virus: A History of the Concept and the creator of an extensive collection of in-depth oral histories on bioscience, biomedicine, and biotechnology.
--This text refers to an out of print or unavailable edition of this title.Product details
- ASIN : B00629MDKI
- Publisher : University of Chicago Press; Reprint edition (September 21, 2011)
- Publication date : September 21, 2011
- Language : English
- File size : 6230 KB
- Text-to-Speech : Enabled
- Screen Reader : Supported
- Enhanced typesetting : Enabled
- X-Ray : Not Enabled
- Word Wise : Enabled
- Sticky notes : On Kindle Scribe
- Print length : 306 pages
- Best Sellers Rank: #270,287 in Kindle Store (See Top 100 in Kindle Store)
- Customer Reviews:
About the author

Discover more of the author’s books, see similar authors, read author blogs and more
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on Amazon-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
I have to admit I had never heard of the Bancroft Library’s website (http://bancroft.berkeley.edu/ROHO/pro...) for the Program in Bioscience and Biotechnology Studies, “which centerpiece is a continually expanding oral history collection on bioscience and biotechnology [with ] in-depth, fully searchable interviews with basic biological scientists from numerous disciplines; with scientists, executives, attorneys, and others from the biotechnology industry.”
The invention of new research and business practices over a very short period
Swanson was captivated: “This idea [of genetic engineering] is absolutely fantastic; it is revolutionary; it will change the world; it’s the most important thing I have ever heard.” [… But Swanson was nearly alone.] “Cetus was not alone in its hesitation regarding the industrial application of recombinant DNA technology. Pharmaceutical and chemical corporations, conservative institutions at heart, also had reservations.” [Page 32] “Whatever practical applications I could see for recombinant DNA… were five to ten years away, and, therefore, there was no rush to get started, from a scientific point of view.” [Page 32] “I always maintain” Boyer reminisced, “that the best attribute we had was our naïveté… I think if we had known about all the problems we were going to encounter, we would have thought twice about starting… Naïveté was the extra added ingredient in biotechnology.” [Page 36]
The book shows the importance of scientific collaborations. Not just Boyer at UCSF but for example with a hospital in Los Angeles. A license was signed with City of Hope Hospital with a 2% royalty on sales on products based on the licensed technology. “[…] negotiated an agreement between Genentech and City of Hope that gave Genentech exclusive ownership of any and all patents based on the work and paid the medical center a 2 percent royalty on sales of products arising from the research.” [Page 57]
Even if in 2000, City of Hope had received $285M in royalties, it was not happy with the outcome. After many trials, the California Supreme Court in 2008 awarded another $300M to City of Hope. So the book shows that these collaborations gave also much legal litigation. [Page 58]
In a few years, Genentech could synthesize somatostatin, insulin, human growth hormone and interferon. It is fascinating to read how intense, uncertain, stressful these years were for Swanson, Perkins, Boyer and the small group of Genentech employees and academic partners (Goeddel, Kleid, Heyneker, Seeburg, Riggs, Itakura, Crea), in part because of the emerging competition from other start-ups (Biogen, Chiron) and academic labs (Harvard, UCSF).
“On August 25, 1978 – four days after Goeddel’s insulin chain-joining feat – the two parties signed a multimillion-dollar, twenty-year research and development agreement. For an upfront licensing fee of $500,000, Lilly got what it wanted: exclusive worldwide rights to manufacture and market human insulin using Genentech’s technology. Genentech was to receive 6 percent royalties and City of Hope 2 percent royalties on product sales.” [Page 94] They managed to negotiate a contractual condition limiting Lilly’s use of Genentech’s engineered bacteria to the manufacture of recombinant insulin alone. The technology would remain Genentech’s property, or so they expected. As it turned out, the contract, and that clause in particular, became a basis for a prolonged litigation. In 1990, the courts awarded Genentech over $150 million in a decision determining that Lilly had violated the 1978 contract by using a component of Genentech’s insulin technology in making its own human growth hormone product. [Page 95] Perkins believed that the 8 percent royalty rate was unusually high, at a time when royalties on pharmaceutical products were along the lines of 3 or 4 percent. “It was kind of exorbitant royalty, but we agreed anyway – Lilly was anxious to be first (with human insulin)” […]The big company – small company template that Genentech and Lilly promulgated in molecular biology would become a prominent organizational form in a coming biotechnology industry. [Page 97]
The invention of a new culture
Young as Swanson was, he kept everyone focused on product-oriented research. He continued to have scant tolerance for spending time, effort, and money on research not tied directly to producing marketable products. “We were interested in making something usable that you could turn into a drug, inject in humans, take to clinical trials.” A few year before his premature death, Swanson remarked, “I think one of the things I did best in those days was to keep us very focused on making a product.“ His goal-directed management style differed markedly from that of Genentech’s close competitors. [Page 129]
But at the same time Boyer would guarantee a high quality research level by encouraging employees to write the best possible scientific articles. This guaranteed the reputation of Genentech in the academic world.
A culture was taking shape at Genentech that had no exact counterpart in industry or academia. The high-tech firms in Silicon Valley and along Route 128 in Massachusetts shared its emphasis on innovation, fast-moving research, and intellectual property creation and protection. But the electronics and computer industries, and every other industrial sector for that matter, lacked the close, significant, and sustained ties with university research that Genentech drew upon from the start and that continue to define the biotechnology industry of today. Virtually every element in the company’s research endeavor – from its scientists to its intellectual and technological foundations – had originated in decade upon decade of accumulated basic-science knowledge generated in academic labs. […] At Boyer’s insistence, the scientists were encouraged to publish and engage in the wide community of science. [Page 131]
But academic values had to accommodate corporate realities: at Swanson’s insistence, research was to lead to strong patents, marketable products, and profit. Genentech’s culture was in short a hybrid of academic values brought in line with commercial objectives and practices. [Page 132]
Swanson was the supportive but insistent slave driver, urging on employees beyond their perceived limits: “Bob wanted everything. He would say, If you don’t have more things on your plate than you can accomplish, then you’re not trying hard enough. He wanted you to have a large enough list that you couldn’t possibly get everything done, and yet he wanted you to try.” […] Fledging start-ups pitted against pharmaceutical giants could compete mainly by being more innovative, aggressive, and fleet of foot. Early Genentech had those attributes in spades. Swanson expected – demanded – a lot of everyone. His attitude was as Roberto Crea recalled: “Go get it; be there first; we have to beat everybody else… We were small, undercapitalized, and relatively unknown to the world. We had to perform better than anybody else to gain legitimacy in the new industry. Once we did, we wanted to maintain leadership.” […] As Perkins said “Bob would never be accused of lacking a sense of urgency. “ […] Even Ullrich, despite European discomfort with raucous American behavior, admitted to being seduced by Genentech’s unswervingly committed, can-do culture. [Page 133]
New exit strategies
Initially Kleiner thought Genentech would be acquired by a major pharma company. It was just a question of when. He approached Johnson and Johnson and “floated the idea of a purchase price of $80 million. The offer fell flat. Fred Middleton [Genentech’s VP of finance], present at the negotiations, speculated that J&J didn’t have “a clue about what to do with this [recombinant DNA] technology – certainly didn’t know what it was worth. They couldn’t fit it in a Band-Aid mold”. J&J executives were unsure how to value Genentech, there being no standard for comparison or history of earnings.” [Page 140]
Perkins and Swanson made one more attempt to sell Genentech. Late in 1979, Perkins, Swanson, Kiley and Middleton boarded a plane for Indianapolis to meet with Eli Lilly’s CEO and others in top management. Perkins suggested a selling price of $100 million. Middleton’s view is that Lilly was hamstrung by a conservative “not invented here” mentality, an opinion supported by the drug firm’s reputation for relying primarily on internal research and only reluctantly on outside contracts. The company’s technology was too novel, too experimental, too unconventional for a conservative pharmaceutical industry to adopt whole-heartedly. [Page 141]
When Genentech successfully developed interferon, a new opportunity happened. Interferon had been discovered in 1957 and thought to prevent virus infection. In November 1978, Swanson signed a confidential letter of intent with Hoffmann – La Roche and a formal agreement in January 1980. They were also lucky: “Heyneker and a colleague attended a scientific meeting in which the speaker – to everyone’s astonishment given the field’s intense competitiveness – projected a slide of a partial sequence of fibroblast interferon. They telephoned the information to Goeddel, who instantly relay the sequence order to Crea. […] Crea started to construct the required probes. […] Goeddel constructed a “library” of thousands upon thousands of bacterial cells, seeking ones with interferon gene. Using the partial sequence Pestka retrieved, Goeddel cloned full-length DNA sequences for both fibroblast and leukocyte interferon. […] In June 1980, after filing patent protection, Genentech announced the production in collaboration with Roche.” [Page 145] Genentech could consider going public and after another fight between Perkins and Swanson, Genentech decided to do so. Perkins had seen that the year 1980 was perfect for financing biotech companies through a public offering but Swanson saw the challenges this would mean for a young company with nearly no revenue or product.
New role models
The 1980-81 period would see the creation of a fleet of entrepreneurial biology-based companies – Amgen, Chiron, Calgene, Molecular Genetics, Integrated Genetics, and firms of a lesser note – all inspired by Genentech’s example of a new organizational model for biological and pharmaceutical research. Before the IPO window closed in 1983, eleven biotech companies in addition to Genentech and Cetus, had gone public*. […] But not only institutions were transformed. Genentech’s IPO transformed Herb Boyer, the small-town guy of blue-collar origins, into molecular biology’s first industrial multimillionaire. For admiring scientists laboring at meager academic salaries in relative obscurity, he became a conspicuous inspiration for their own research might be reoriented and their reputation enhanced. If unassuming Herb – just a guy from Pittsburgh, as a colleague observed – could found a successful company with all the rewards and renown that entailed, why couldn’t they? [Page 161]
*: According to one source, the companies staging IPO were Genetic Systems, Ribi Immunochem, Genome Therapeutics, Centocor, Bio-Technology General, California Biotechnology, Immunex, Amgen, Biogen, Chiron, and Immunomedics. (Robbins-Roth, From Alchemy To Ipo: The Business Of Biotechnology)
Highly recommend to any aspiring biotech founder as well as anyone interested in science who loves a riveting read.
Things that would not immediately spring to mind today, like the deep suspicion or outright hostility of academic scientists to scientists who had an interest in business, or the paranoia surrounding the early days of genetic engineering, even in the scientific community.
Somewhat uncritical acceptance of a "testosterone-charged atmosphere" as a key component of their success. Anybody who's worked with accomplished women scientists knows drive and ambition do not depend on one hormone!
Top reviews from other countries
Reviewed in Germany 🇩🇪 on September 4, 2021






