Enter your mobile number or email address below and we'll send you a link to download the free Kindle App. Then you can start reading Kindle books on your smartphone, tablet, or computer - no Kindle device required.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

  • List Price: $82.25
  • Save: $31.31 (38%)
In Stock.
Rented from RockCityBooks
Fulfilled by Amazon
To Rent, select Shipping State from options above
Due Date: Dec 17, 2016 Rental Details
  • FREE return shipping at the end of the semester.
  • Access codes and supplements are not guaranteed with rentals.
Trade in your item
Get a $13.24
Gift Card.
Have one to sell? Sell on Amazon
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 2 images

The Principles of Mathematical Analysis (International Series in Pure & Applied Mathematics) Paperback – 1976

4.2 out of 5 stars 161 customer reviews

See all 10 formats and editions Hide other formats and editions
New from Used from
Paperback, 1976
$44.77 $33.94
--This text refers to the Hardcover edition.

Get a FREE Amazon Echo with homework help
Choose from 40+ subjects with online tutors from The Princeton Review. Learn more
click to open popover

The latest book club pick from Oprah
"The Underground Railroad" by Colson Whitehead is a magnificent novel chronicling a young slave's adventures as she makes a desperate bid for freedom in the antebellum South. See more

Product Details

  • Series: International Series in Pure & Applied Mathematics
  • Paperback: 342 pages
  • Publisher: McGraw-Hill Publishing Company; 3rd edition (1976)
  • Language: English
  • ISBN-10: 0070856133
  • ISBN-13: 978-0070856134
  • Product Dimensions: 8.2 x 5.8 x 0.7 inches
  • Shipping Weight: 12 ounces
  • Average Customer Review: 4.2 out of 5 stars  See all reviews (161 customer reviews)
  • Amazon Best Sellers Rank: #140,864 in Books (See Top 100 in Books)

Customer Reviews

Top Customer Reviews

Format: Hardcover
Principles of Mathematical Analysis by Walter Rudin can rightly be called "the Bible of classical analysis". I have seen it cited in more books than I can count. And after a full year of working through the book in graduate school, I can see why. As many other reviewers here have pointed out, this book requires more than a little of that magical quality called "mathematical maturity". Simply defined, "mathematical maturity" is the ability to read between the lines and fill in the gaps in a given mathematical text.

While Rudin certainly provides an encyclopedic account of basic analysis in metric spaces, he does leave some gaps (many are intentional) in his proofs. So be alert when you read this book, and if anything in his super short, slick proofs is not 100% clear, be prepared to fill in the details yourself. Also, remember that Rudin's way of presenting proofs is not always the most instructive when first learning the material. There is an implicit challenge to the reader to see if he or she can provide a more expository proof. Although I can say that when the classical proof suffices, Rudin usually does not deviate from it.

Some of the highlights/weaknesses of the book are the following:

Chapter 1: The material in this chapter is of course standard. However, Rudin supplements the chapter with an appendix on the construction of the real field from the field of rationals via the notion of Dedekind cuts. After reading many, many analysis books, I can tell you that it is difficult to find an explicit construction of the reals in books on an elementary level. Thus, while certainly not required to appreciate the rest of the text, I do recommend at least a casual perusal of the appendix just to see that "it can be done".
Read more ›
9 Comments 318 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Hardcover
OK... Deep breaths everybody...

It is not possible to overstate how good this book is. I tried to give it uncountably many stars but they only have five. Five is an insult. I'm sorry Dr. Rudin...

This book is a good reference but let me tell you what its really good for. You have taken all the lower division courses. You have taken that "transition to proof writing" class in number theory, or linear algebra, or logic, or discrete math, or whatever they do at your institution of higher learning. You can tell a contrapositive from a proof by contradiction. You can explain to your grandma why there are more real numbers than rationals. Now its time to get serious.

Get this book. Start at page one. Read until you come to the word Theorem. Do not read the proof. Prove it yourself. Or at least try. If you get stuck read a line or two until you see what to do.

Thrust, repeat.

If you make it through the first six or seven chaptors like this then there shall be no power in the verse that can stop you. Enjoy graduate school. You half way there.

Now some people complain about this book being too hard. Don't listen to them. They are just trying to pull you down and keep you from your true destiny. They are the same people who try to sell you TV's and lobodemies.

"The material is not motivated." Not motivated? Judas just stick a dagger in my heart. This material needs no motivation. Just do it. Faith will come. He's teaching you analysis. Not selling you a used car. By the time you are ready to read this book you should not need motivation from the author as to why you need to know analysis.
Read more ›
33 Comments 591 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Hardcover
I stumbled onto this discussion by accident, and then remembered that Rudin's book had been my Analysis text very many years ago, in a two-semester upper division course, for undergrad math majors. Personally, I've long since left behind the formal pursuit of math, but keep a fond appreciation for those years of study.
I recall that at the beginning of my Analysis course I hated Rudin's book, and then after a few weeks found that I was beginning to tolerate it, even appreciate it. By the end of the course, under the tutelage of my wily professor, I came to regard the book and its author with near veneration. I still remember being forced to work through the problem sets, grumbling at the beginning, and then achieving that sense of exhilaration one feels when a dimly understood idea suddenly becomes blazingly clear, and another tantalizing idea is close behind.
Perhaps such experiences, which are both intellectual and emotional, are part of the "maturity" that seasoned mathematicians try to cultivate in their students. In any case, I'm convinced that Rudin's book, at least in the hands of a skillful teacher, can help bring a dutiful student to mathematical maturity.
After all this reminiscing, I'm going to dig out a copy, and see if I can recapture some of those memorable moments of discovery.
1 Comment 139 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Hardcover
then I suggest you use this book for your introduction to analysis. I divide up my critique into the following sections:
The author of this book expects you to be comfortable with mappings, set theory, linear algebra, etc. I would recommend that you use either Munkres' book on topology, or (if you can't afford that) the Dover book, Introduction to Topology by Bert Mendelson (you should read all of Ch. 3 BEFORE starting Rudin if you want to pick up on which things could be even more general than they are in Rudin - refer to earlier chapters if you don't recognize something). I suggest also looking at continuity in one of the topology books I mentioned. Also, look up the following things and at least know what they are before getting past Ch. 4, so you have some supplemental language to use: Banach space, boundary, basis for a topology, functional.

Like I said, this book is for serious people, and it requires strong focus for you to pick up on all the subtle arguments made through his examples. I do not agree with some people who say this book is bad for an introduction, in fact I think it is the best because Rudin REFUSES to be tied down to single variable concepts which could be explained just as easily in the context of more general spaces. If you are one of those kids who think's you're great at math because you do well in competitions, steer clear; your place is playing with series, inequlities, and magic tricks. If you are a get-your-hands-dirty kind of mathematician, then you should never let this book leave your side.
I think that it may be a different style than most people are used to, but once you get past that I think I would call the readability nearly perfect.
Read more ›
1 Comment 60 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse

Most Recent Customer Reviews