Buy new:
$68.95$68.95
FREE delivery:
Monday, Feb 6
Ships from: Amazon.com Sold by: Amazon.com
Buy used: $31.99
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required. Learn more
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Real Sound Synthesis for Interactive Applications 1st Edition
| Price | New from | Used from |
Enhance your purchase
Virtual environments such as games and animated and "real" movies require realistic sound effects that can be integrated by computer synthesis. The book emphasizes physical modeling of sound and focuses on real-world interactive sound effects. It is intended for game developers, graphics programmers, developers of virtual reality systems and training simulators, and others who want to learn about computational sound. It is written at an introductory level with mathematical foundations provided in appendices.
Links to code examples and sound files can be found on the Downloads/Updates tab.
- ISBN-101568811683
- ISBN-13978-1568811680
- Edition1st
- Publication dateJuly 1, 2002
- LanguageEnglish
- Dimensions6 x 0.64 x 9 inches
- Print length263 pages
Customers who viewed this item also viewed
Editorial Reviews
About the Author
Product details
- Publisher : A K Peters/CRC Press; 1st edition (July 1, 2002)
- Language : English
- Paperback : 263 pages
- ISBN-10 : 1568811683
- ISBN-13 : 978-1568811680
- Item Weight : 1.15 pounds
- Dimensions : 6 x 0.64 x 9 inches
- Best Sellers Rank: #1,134,664 in Books (See Top 100 in Books)
- #793 in Game Programming
- #1,517 in Artificial Intelligence & Semantics
- #4,471 in Computer Software (Books)
- Customer Reviews:
About the author

Discover more of the author’s books, see similar authors, read author blogs and more
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on Amazon-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
The first section (chapters 1-3) defines digital audio, compression, wave synthesis, and simple filtering techniques. The chapters form the foundation for the later sections and define the common asset formats and techniques currently used in games. Cook emphases that key components of sound manipulation are the sampling rate and quantization of the source audio. The text demonstrates how sounds with higher sampling rates allow for greater manipulation with fewer artifacts but incur a greater computational cost.
The second section (chapters 4-8) introduces sound modeling through simplified physical systems, such as an ideal spring, and Fourier series equations. While an understanding of college physics and calculus is helpful (especially if you'd like to code these methods), the book doesn't require it or bog down in theory or mathematical proofs. (For those interested in the details, they are provided in the appendices). The concepts described in this section are critical in creating computer sound models that represent real world objects.
The last section (chapters 7-16) provides physics equations that allow for the simulation of real world instruments (string instruments, tubes, and multi-dimensional objects). Each chapter describes a different system based on Fourier construction, filtering, and physics-based equations. It's the heart of the book and most interesting. The background in the two previous sections is essential to fully grasp the concepts Cook defines here.
Throughout each chapter, Cook couples clear concise writing with a touch of humor and illustrative diagrams. Cook provides a good initial foundation as the topics covered gradually build in complexity. The clean organizational layout made it easy for me to refer back to previous sections when I felt the need. In many cases, however, I found the writing to be a little too condensed and wished for a paragraph describing a concept rather than the sentence provided. Cook does supply references at the end of each chapter for those readers seeking additional detail.
The book also includes a CD containing audio samples of the topics discussed throughout the book. While reading the book, it was useful to be able to hear the point or technique made in the text. The CD also contains Cook's sound synthesis toolkit and several examples of instruments highlighted in the last section.
Unfortunately in current development, real-time sound synthesis in games has a limited place. Due to the complex calculations of Fourier series, fast digital signal processor chips are required to simulate the audio effects without impacting the rest of the game. Minimally, filters and other simple routines outlined in the book can be written for target hardware to accomplish specialized effects but this is nothing radically new.
However, Cook's research in simulating audio is extremely exciting. During the calculation of an object's dynamic behavior (such as collision response, striking, falling, moving, etc.) a minimal additional amount of time can be spent to determine the audio effects. According to Cook's findings, this amount is generally less than 5% of the total time required to simulate an object's physical behavior. Admittedly, these calculations are on the order of minutes versus milliseconds but eventually Moore's Law will catch up and simplifications will allow unparalleled audio effects in conjunction with physical simulation.
Developers and sound designers interested in the math and physics of creating real-time sounds should pick up this book. Those interested in a fascinating look at the mechanisms of dynamically producing sound might also want to give it a read provided it's with the understanding that the direct applicability to games is at least few years away.
Chapter 1 briefly establishing the fundamentals of digital audio, and includes an introduction to the basics of quantization, compression, and Pulse-Code Modulation (PCM) sampling. Chapter 2 investigates sound synthesis starting with wavetable synthesis. In chapter 3, digital filters are introduced. Included is a concise but clear introduction to Linear Time Invariant (LTI) systems, convolution, Finite Impulse Response (FIR) filters, Infinite Impulse Response (IIR) filters, and Z transforms. The chapter culminates in an introduction to the BiQuad filter.
Chapter 4, which deals with modal synthesis, acts as a stepping-stone to the frequency domain, leading to chapter 5's discussion of the Fourier Transform. This chapter examines Discrete Fourier Transform (DFT), fast convolution, and Short Time Fourier Transform (STFT), and ends with examples of applications.
Chapters 6, 7, and 8 delve deeper into synthesis/analysis concepts such as Linear Predictive Coding (LPC), spectral modeling, additive/subtractive synthesis, noise signals, and inharmonicity, using the frequency domain techniques learned in previous chapters. You'll hardly turn a page without an accompanying picture or block diagram, a particularly valuable feature of this book.
Chapter 9 explores the physical modeling concepts of string vibrations and stiff bars. Modeling algorithms are introduced using basic physics perspectives centered around the familiar string, mass, and damper paradigms first introduced in chapter 4. Here again, rather than bombarding the reader with tons of equations, Mr. Cook explains ideas mainly through diagrams, sound examples, and block diagrams, which is very helpful for the software implementation of algorithms. The ready-to-compile C++ code for this section included on the CD-ROM provide models of a plucked string (Plucked.cpp), a mandolin (Mandolin.cpp), and a bowed string (Bowed.cpp).
In Chapter 11, Tubes and Air Cavities, the author introduces more models while leaving detailed mathematical derivations of equations for the appendix. He concludes chapter 11 with "Building and Blowing a Bottle Model", and includes code and sound examples, as usual. Going into chapter 12, more complex, higher dimensional models are introduced, with the traditional mass-spring model in the context of a meshed membrane starting off the chapter.
Chapter 13 introduces modeling and synthesizing particle interaction. Some of the topics covered include Formant Wave Functions (FOFs) for voice synthesis, single particle models, multi-particle systems, and statistical multi-particle systems such as a simple maraca model, implemented in less than 30 lines of C code with an accompanying block diagram.
Chapter 14 deals with the subtleties of exciting and controlling sound models. For example, Mr. Cook discusses the differences between exciting a string with a plectrum as opposed to using the fleshy part of the thumb. He also shows some fascinating effects of the striking conditions of the Tibetan prayer bowl, which exhibits very different spectra as a function of strike-direction while keeping strike-point constant. Other topics discussed include bowing, scraping, and frictional issues in synthesis. MIDI, OSC (Open Sound Control), and other standards for sound and multimedia control are also briefly examined.
Chapter 15 walks the reader through a complete system called PhOLISE (Physically Oriented Library of Interactive Sound Effects) that could possibly be applied to areas such as gaming, animation, and sound effects in film production. The five sections of the appendix go into greater detail regarding proofs, derivations, and properties of topics such as DFT properties, zero-padding, proof of fast convolution, and ideal string behaviors.
After you grasp the contents of this book, you might want to read "The Physics of Musical Instruments" and use some of Mr. Cook's techniques to synthesize the numerical models explained in that book.
Top reviews from other countries
|





