Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime
Try Prime
and start saving today with fast, free delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Streaming of thousands of movies and TV shows with limited ads on Prime Video.
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
$25.00$25.00
Ships from: Amazon.com Sold by: Amazon.com
Save with Used - Good
$20.99$20.99
Ships from: Amazon Sold by: Party of 6 Products
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Follow the author
OK
Schaum's Outline of Theory and Problems of Combinatorics including concepts of Graph Theory 1st Edition
Purchase options and add-ons
Confusing Textbooks?
Missed Lectures?
Tough Test Questions?
Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.
This Schaum's Outline gives you
- Practice problems with full explanations that reinforce knowledge
- Coverage of the most up-to-date developments in your course field
- In-depth review of practices and applications
Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!
Schaum's Outlines-Problem Solved.
- ISBN-10007003575X
- ISBN-13978-0070035751
- Edition1st
- PublisherMcGraw Hill
- Publication dateNovember 22, 1994
- LanguageEnglish
- Dimensions7.9 x 0.44 x 10.7 inches
- Print length200 pages
Frequently bought together

Similar items that may ship from close to you
Editorial Reviews
About the Author
Product details
- Publisher : McGraw Hill; 1st edition (November 22, 1994)
- Language : English
- Paperback : 200 pages
- ISBN-10 : 007003575X
- ISBN-13 : 978-0070035751
- Item Weight : 11.6 ounces
- Dimensions : 7.9 x 0.44 x 10.7 inches
- Best Sellers Rank: #1,148,521 in Books (See Top 100 in Books)
- #114 in Graph Theory (Books)
- #197 in Discrete Mathematics (Books)
- #7,791 in Study Guides (Books)
- Customer Reviews:
About the author

Discover more of the author’s books, see similar authors, read author blogs and more
Customer reviews
Our goal is to make sure every review is trustworthy and useful. That's why we use both technology and human investigators to block fake reviews before customers ever see them. Learn more
We block Amazon accounts that violate our community guidelines. We also block sellers who buy reviews and take legal actions against parties who provide these reviews. Learn how to report
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
If you need more exposition, I would suggest something like Notes on Introductory Combinatorics by Polya, Tarjan and Woods, but as I say, I think the book by Balakrishnan is just fine as it is.
And that's the issue if you've not studied this topic before or are not using the book in conjunction with a regular textbook. The explanations are too brief to really teach the material. This is a big variable in Schaum publications. Some books in the line do better, many don't.
Know what to expect when you buy this book, and you won't be disappointed. If you try to use it as a primary text to introduce yourself to combinatorics, you're on the wrong path.
That said, the book is comprehensive enough to be useful, and the wide range of example problems will solidify your knowledge.
In the computer era, combinatorics has moved from the back room to front and center. It's an important, wide-ranging topic. This book does it justice if used as intended --- as a supplement and extension to a primary source.
This book is an introduction to combinatorics for the undergraduate mathematics student and for those working in applications of combinatorics. As with all the other guides in the Schaums series on mathematics, this one has a plethora of many interesting examples and serves its purpose well. Readers who need a more in-depth view can move on to more advanced works after reading this one. The author dedicates this book to the famous mathematician Paul Erdos, who is considered the father of modern combinatorics, and is considered one of most prolific of modern mathematicians, with over 1500 papers to his credit.
The author defines combinatorics as the branch of mathematics that attempts to answer enumeration questions without considering all possible cases. The latter is possible by the use of two fundamental rules, namely the sum rule and the product rule. The practical implementation of these rules involves the determination of permutations and combinations, which are discussed in the first chapter, along with the famous pigeonhole principle. Most of this chapter can be read by someone with a background in a typical college algebra course. The author considers some interesting problems in the "Solved Problems" section, for example one- and two-dimensional binomial random walks, and problems dealing with Ramsey, Catalan, and Stirling numbers. The consideration of Ramsey numbers will lead the reader to several very difficult open problems in combinatorics involving their explicit values.
Generalized permutations and combinations are considered in chapter two, along with selections and the inclusion-exclusion principle. The author proves the Sieve formula and the Phillip Hall Marriage Theorem. In the "Solved Problems" section, the duality principle of distribution, familiar from integer programming is proved, and the author works several problems in combinatorial number theory. A reader working in the field of dynamical systems will appreciate the discussion of the Moebius function in this section. Particularly interesting in this section is the discussion on rook and hit polynomials.
The consideration of generating functions and recurrence relations dominates chapter 3, wherein the author considers the partition problem for positive integers. The first and second identities of Euler are proved in the "Solved Problems" section, and Bernoulli numbers, so important in physics, are discussed in terms of their exponential generating functions. The physicist reader working in statistical physics will appreciate the discussion on Vandermonde determinants. Applications to group theory appear in the discussion on the Young tableaux, preparing the reader for the next chapter.
A more detailed discussion of group theory in combinatorics is given in chapter 4, the last chapter of the book. The author proves the Burnside-Frobenius, the Polya enumeration theorems, and Cayley's theorem in the "Solved Problems" section. Readers without a background in group theory can still read this chapter since the author reviews in detail the basic constructions in group theory, both in the main text and in the "Solved Problems" section. Combinatorial techniques had a large role to play in the problem of the classification of finite simple groups, the eventual classification proof taking over 15,000 journal pages and involving a large collaboration of mathematicians. Combinatorics also made its presence known in the work of Richard Borchers on the "monstrous moonshine" that brought together ideas from mathematical physics and the largest simple group, called the monster simple group.
The author devotes an appendix to graph theory, which is good considering the enormous power of combinatorics to problems in graph theory and computational geometry. Even though the discussion is brief, he does a good job of summarizing the main results, including a graph-theoretic version of Dilworth's theorem. Combinatorial/graph-theoretic considerations are extremely important in network routing design and many of the techniques discussed in this appendix find their way into these kinds of applications. The author asks the reader to prove that Dilworths' theorem, the Ford-Fulkerson theorem, Hall's marriage theorem, Konig's theorem, and Menger's theorem are equivalent. A very useful glossary of the important definitions and concepts used in the book is inserted at the end of the book.
Top reviews from other countries
Do not buy the "new" one, try to find the original printing by McGraw Hill.
I advise you to consult the various options available in a library before buying any book, to find the text more suitable to your level of maturity and way of thinking.












