Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime
Try Prime
and start saving today with fast, free delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Streaming of thousands of movies and TV shows with limited ads on Prime Video.
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
$26.73$26.73
FREE delivery: Thursday, April 18 on orders over $35.00 shipped by Amazon.
Ships from: Amazon.com Sold by: Amazon.com
Buy used: $13.77
Other Sellers on Amazon
& FREE Shipping
89% positive over last 12 months
+ $5.37 shipping
90% positive over last 12 months
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Where Mathematics Come From First Edition
Purchase options and add-ons
- ISBN-100465037712
- ISBN-13978-0465037711
- EditionFirst Edition
- Publication dateAugust 16, 2001
- LanguageEnglish
- Dimensions7.5 x 1.16 x 9.25 inches
- Print length511 pages
Frequently bought together

Similar items that may ship from close to you
Editorial Reviews
Amazon.com Review
Those willing to brave its rigors will find Where Mathematics Comes From rewarding and profoundly thought-provoking. The heart of the book wrestles with the important concept of infinity and tries to explain how our limited experience in a seemingly finite world can lead to such a crazy idea. The authors know their math and their cognitive theory. While those who want their abstractions to reflect the real world rather than merely the insides of their skulls will have trouble reading while rolling their eyes, most readers will take to the new conception of mathematical thinking as a satisfying, if challenging, solution. --Rob Lightner
Review
"Adds body heat to the cold and beautiful abstractions of mathematics." -- -The American Scholar
"The authors take readers on a dazzling excursion without sacrificing the rigor of their exposition. Revolutionary." -- -Publishers Weekly
About the Author
Rafael Nuñez is currently at the Department of Psychology of the University of Freiburg, and is a research associate of the University of California, Berkeley. He is the co-editor of Reclaiming Cognition: The Primacy of Action, Intention and Emotion.
Product details
- Publisher : Basic Books; First Edition (August 16, 2001)
- Language : English
- Paperback : 511 pages
- ISBN-10 : 0465037712
- ISBN-13 : 978-0465037711
- Item Weight : 1.79 pounds
- Dimensions : 7.5 x 1.16 x 9.25 inches
- Best Sellers Rank: #171,578 in Books (See Top 100 in Books)
- #105 in Mathematics History
- #308 in Medical Cognitive Psychology
- #529 in Cognitive Psychology (Books)
- Customer Reviews:
About the author

George Lakoff is Richard and Rhoda Goldman Distinguished Professor of Cognitive Science and Linguistics at the University of California at Berkeley, where he has taught since 1972. He previously taught at Harvard and the University of Michigan. He graduated from MIT in 1962 (in Mathematics and Literature) and received his PhD in Linguistics from Indiana University in 1966. He is the author of the New York Times bestseller Don't Think of an Elephant!, among other works, and is America’s leading expert on the framing of political ideas.
George Lakoff updates may be followed on Facebook, Twitter, YouTube, and Google+. Find these links, a complete bibliography, and more at http://georgelakoff.com
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on Amazon-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
A second or third edition could be very valuable as a textbook; what L&N have written is a great start, but there are a few rough spots.
To paraphrase Ogden Nash,
One thing that Cognitive Science would be greatly the better for
Would be a more restricted (and more appropriate) employment of simile and metaphor.*
Consider what is perhaps the metaphor most frequently quoted in WMCF, "Numbers Are Points on a Line."
Some subsets of the numbers, including some infinite subsets (e.g. the 'real' numbers, or the 'pure imaginary' numbers {0 + xi}) can be mapped one-to-one onto points of a Euclidian straight line in such a manner that the directed distance from the point designated as zero [call it p(0)] to the point designated as x [call it p(x)] is proportional to the number x, and such a mapping can be very useful. Fine, use it. But why let yourself get so confused as to think that numbers are points. Points are points and numbers are numbers; points and numbers are two different concepts, and 'all you are entitled to say at the very most'* is that a particular subset of the numbers is, in some very useful respects, like the points on a line, which is a simile, not a metaphor. In general, I think similes would be more appropriate than metaphors in math. Sometimes, I think even a simile is a stretch.
Near the top of p. 199: "The point of this is . . . to comprehend how we understand it."
Is there only one way that anyone can understand something? Does every human mind work the same way?
On p. 424: "-n and n are symmetrical points relative to the origin (zero)
"This symmetry is conceptualized in terms of mental rotation . . . . Cognitively, we visualize the relationship between the positive and negative numbers using a rotational transformation . . . ." When dealing with the complex plane, this is clearly the better way to do it, but when dealing with 'real' numbers only, I have always thought of it as sliding a sort of mental tape measure along the number line until the point on the tape that was at n is at zero, and then the point that was at zero will be at -n. And lo and behold, for the 'real number line' this works just as well as the rotation, no better, no worse.
On pp. 218-220 L&N discuss ordinal numbers. Another use besides cardinal and ordinal is nominal, using a number as simply a name for something, e.g. Joseph Heller's wonderful book Catch-22 . There were no catches 1 thru 21; 22 was just part of the name for that particular catch.
A few other items I noticed:
Top of p. 86: "Moreover, we don't use binary notation, even though computers do, because our ten fingers make it easier for us to use base 10." Actually, the main reason we seldom use binary notation is because it is cumbersome. Our ten digits (8 fingers, 2 thumbs) led us rather naturally to base 10, but octal and hexadecimal are used quite a bit, and it is actually easier to keep from losing your place counting on your fingers in binary, in which 10 digits allow you to count from 0 to 31 on one hand, or to 1023 using both hands
p. 140: The SIMILE Classes Are Like Containers sort of breaks down for me with the Venn diagram of two overlapping circles for two classes that have some members in common but neither is a subclass of the other.
p. 331: "For example, we take the curvature at a point in a curve as being PART OF THE CURVE. (italics in original; I had to substitute CAPS because Amazon's text box doesn't permit italics.) I take the curvature to be a characteristic of part of the curve, not a part of the curve. And a tangent is most certainly not part of a curve.
p. 332: "A Function Is a Point in a Space" ???
p. 337: "What COMMONPLACE cognitive mechanisms do they use?" (emphasis added) You aren't even interested in any unusual cognitive functions they may use?
p. 347: ". . . every bit of thinking we do must be carried out by neural mechanisms of EXACTLY the right structure to carry out that form of thought." Our brains haven't the flexibility to 'make do' to the slightest extent?
p. 349: "The Pythagorean theorem hasn't changed in twenty-five hundred years and, we think, won't in the future." But what we know about it has changed considerably. I have discovered several facts that, so far as I have been able to find out, were not previously known, e.g. a set of 3 equations in r (row #) and k (column #) which define an infinity by infinity matrix of Pythagorean triangles, each row and each column of which is a family with a or b in arithmetic progression, and c - a or c - b constant:
a(r,k) = 4rk + 2k(k-1)
b(r,k) = 4r(r+k-1) - 2k + 1
c(r,k) = 4r(r+k-1) + 2k(k-1) + 1
p. 360: ". . . the form of arithmetic used in all computers." There is no such thing as THE form of arithmetic used in all computers, Many computers use two's complement binary arithmetic, but the Control Data 6600 and 7600 used one's complement binary arithmetic. The IBM 1401, 1440, and 1620 used binary coded decimal arithmetic. All computers I have ever programmed had integer arithmetic, and most, but not all, had floating point.
p. 361: "All of that arithmetic used floating-point, not standard arithmetic." Simply not true. See just above.
* Ogden Nash: Very Like a Whale.
Top reviews from other countries
It is relatively easy to corroborate the author's thesis, that the development of mathematics can be accurately described in terms of application of metaphorical structures and conceptual blending mechanisms on mathematical concepts and thereby creating new concepts and so forth. Just take a contemporary mathematical advanced textbook on calculus or algebra and compare it to the writings of mathematicians before the invention of differential calculus (in Lakoffs/Nunez terms: the construction of infinitesimals and the mapping of numbers on the points on a line)or even Euler. The difference is striking: The idea that mathematical insights should rely on some essential axioms whence all mathematical truth can be derived must have seemed outlandish to mathematicians before the 19th century (although proved to be incorrect for quite some time now the notion of mathematics as being independent and self-sustaining seems to be quite widespread still).
Of course, by exploiting the possibilies of metaphorical cross-mapping within mathematics itself mathematics has liberated itself from reality to a great extent and turned into an art. Why else would mathematicians claim that beauty, simplicty and truth are closely interrelated?
The authors (and myself) obviously love mathematics and hold mathematicians in high esteem. And even more so by the fact that mathematics is "only" human.
A great reader for anyone who loves mathematics and wonders how it connects to common sense!
オイラーの式とよばれるこの式は,大学1年生レベルの数学(テイラー展開と複素関数論)で証明することができますが,「なぜこの式が成り立つか」というのは,不問に付されることが多いと思います.(「人間にはあずかり知らない神秘だとしかいいようがない」など?)
このような考え方,つまり,人間の都合とは無関係に数学の世界が存在して,人間は証明を通じてのみ理解できるのだという考え方は一般的です.しかし本書は,そうした数学の見方をひっくり返します.
認知科学者であるLakoffとNunezは,数学といえど人間の脳のなかで生まれるものであるからには,数学も認知プロセスの一つとして「経験科学」の立場から基礎付けることができるはずだ,という考えから出発し,数学を認知科学から基礎づけることを試みています.
まずはS.Dehaene(『数覚とはなにか』早川書房,2010年)らの研究などを踏まえながら,人間や動物が生まれ持った数や算術の概念についての,認知実験からの知見を紹介します.ところが, Dehaeneらの研究がごく簡単な算術にとどまっていたのに対し,本書ではそこから敷衍して,一気に数学全体まで拡大し,自然数の算術から始まり,ブール代数,集合論,命題論理,群,「無限」の比喩から始まる実数,カントールの無限集合に関する議論,また,デデキントとワイエルシュトラスによる実数論,20世紀に展開された超準解析にいたるまでの数学を,「認知科学的に」解きほぐしてみせます.とにかく,著者らの知的体力には脱帽です.(ここまで認知科学的な議論を推し進めることができるとは驚きだった,と著者ら自身が書いています.)巻末では,彼らの「数学の認知科学」の"Case Study"として,冒頭のオイラーの式:e^πi+1=0が「成り立つ理由」を,彼らの方法で解説してくれます.
他のレビューを見ていると,数学者や科学哲学の分野からはいろいろな批判がありうる(数学的厳密さに問題があるとか,哲学の近年の先行研究が全然踏まえられていない,など)ようです.しかし,学問的価値はともかく,インパクトの強い本であることは間違いないです.とくに数学を教える立場にある人には,読む価値があると思います.たとえば,
・負の数同士の掛け算が正の数になるのはなぜ?
・三角比を,θ>90°に拡張するとはどういうこと?
など,中高の数学で多くの生徒がつまずくだろう疑問は,この本を読めば,かなりの部分解消されるのではないしょうか.
数学とは「本当は何であるか」ではなく,「人間は数学をどのように理解しているのか」という,知りたかったけれど誰も教えてくれなかった疑問に,真正面から答えている稀有な本だと思います.








