Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Follow the author
OK
Adventures from the Technology Underground: Catapults, Pulsejets, Rail Guns, Flamethrowers, Tesla Coils, Air Cannons, and the Garage Warriors Who Love Them Hardcover – January 3, 2006
Adventures from the Technology Underground is Gurstelle’s lively and weirdly compelling report of his travels. In these pages we meet Frank Kosdon and others who draw the scrutiny of the FAA, ATF, and other federal agencies in their pursuit of high-power amateur rocketry, which they demonstrate to impressive—and sometimes explosive—effect at the annual LDRS gathering held in various remote and unpopulated areas (a necessary consideration since that acronym stands for Large Dangerous Rocket Ships). Here also are the underground technologists who turn up at the Burning Man festival in the Nevada high desert, including Lucy Hosking, “the engineer from Hell” and the creator of Satan’s Calliope, aka the World’s Loudest Thing, a pipe organ made from jet engines. Also at Burning Man is Austin “Dr. MegaVolt” Richard, who braves the arcing, sputtering, six-digit voltages of a giant Tesla coil in his protective metal suit. Add in a trip to see medieval-style catapults, air cannons, and supersized slingshots in action at the World Championship Punkin Chunkin competition in Sussex County, Delaware, and forays to the postapocalyptic enclaves of the flamethrower builders and the future-noir pits of the fighting robots, and you have proof positive that the age of invention is still going strong.
In the world of science and engineering, despite its buttoned-down image, there’s plenty of fun, humor, and sheer wonder to be found at the fringes. Adventures from the Technology Underground takes you there.
• Launch homemade high-power rockets.
• Catapult pumpkins the better part of a mile.
• Watch robot gladiators saw, flip, and pound one another into high-tech junk heaps.
• Dazzle the eye with electrical discharges measured in the hundreds of thousands of volts.
• Play with flamethrowers, potato guns, and other decidedly unsafe toys . . .
If this is your idea of fun, you’ll have a major good time on this wild ride through today’s Technology Underground.
From the Burning Man festival in Nevada’s high desert to the latest gathering of Large Dangerous Rocket Ship builders to Delaware’s annual Punkin Chunkin competition (a celebration of “science, radical self-expression, and beer”), you’ll meet the inspired, government-unregulated, and corporately unfettered men and women who operate at the furthest fringes of science, engineering, and wild-eyed arc welding, building the catapults, ultra-high-voltage electrical devices, incendiary artworks, fighting robots, and other machines that demonstrate what’s possible when physics meets human ingenuity.
- Length
224
Pages
- Language
EN
English
- PublisherClarkson Potter
- Publication date
2006
January 3
- Dimensions
5.8 x 0.8 x 8.5
inches
- ISBN-101400050820
- ISBN-13978-1400050826
Customers who bought this item also bought
Editorial Reviews
From Booklist
Copyright © American Library Association. All rights reserved
About the Author
Excerpt. © Reprinted by permission. All rights reserved.
high-power rockets
Your finger hovers over the red button, and you move the microphone close to your mouth. You test the public-address system and are relieved to find that it works: When you speak, your voice is clearly heard all over the firing range.
Several hundred feet away is the launch pad, and on it stands the culmination of many hundreds of hours of labor and many thousands of dollars of your hard-earned discretionary income. It is your rocket, a 15-foot-tall accurate scale model of an American early 1960s solid-fuel Pershing I nuclear ballistic missile. It is a machine that you designed and built from scratch.
Your rocket is loaded with two stages of powerful chemical engines. Like the original Pershing, your motive power comes from two stages of precisely packed chemical fuel arranged in solid form. Each rocket engine is designed such that after it ignites, the gas from the burning chemicals will issue rearward in a high-velocity, high-temperature stream from the ceramic nozzle and propel the rocket up toward the stratosphere. Your rocket will reach empyreal heights, tens of thousands of feet—if all goes well.
You pay rigid attention to the preflight checklist. So far, everything looks like a go. There are small indicator lamps on the firing controls that signal launch status, and the ignition lamp shows green. This means that you have a working circuit, and so when the Fire button is pushed, enough current will be sent through the thin metal wire rammed into the motor to heat it red hot and thereby initiate the self-sustaining chemical reaction that occurs within the main motor’s combustion chamber.
The countdown begins. Ten. Nine. Eight . . . At zero, you push the button and instantly great plumes of white smoke surround the base of the rocket. For a moment, the rocket doesn’t move, and you too hold your breath. Then suddenly it leaps toward the sky with neck-jerking acceleration. The noise from the launch comes a split second after you see it leave, and when the noise does come, it is nearly deafening. The rocket climbs 100, 200, 500, 1,000 feet, its speed escalating logarithmically as it ascends. It climbs and climbs, and it becomes difficult, then nearly impossible, and then totally impossible to see the rocket itself, although the smoke and nozzle fire remain visible.
Everyone congratulates you on a successful launch. There is applause and backslapping, high fives all around.
But the celebration is cut short by the sound of the range safety officer’s warning horn: Whoop! Whoop! Whoop! The RSO’s voice is plainly heard over the public-address system. “Attention! Look up! Look up! We have a rocket coming in hot!” This is not good for you. This is not good for anybody. In fact, this is trouble with a capital T.
What has happened is this: your rocket has two stages. The first stage consists of several large chemical rocket engines that lift the entire rocket for the initial or “booster” phase of the flight. When expended, the booster rocket falls away, and a second engine, mounted above it, is supposed to automatically ignite and continue powering the remaining components upward.
But the second stage, powered by its own very large engine, has ignited later than it was supposed to. In fact, it ignited after the rocket reached apogee and had already turned and begun to head back to earth. So the engine is not powering the rocket to fly up higher. Your rocket is being driven back down to earth not only by gravity, but also by the second-stage engine. There is a real danger that the rocket will reach the ground and your launch area before this engine is burned out and triggers the timed ejection charge that deploys the recovery parachutes.
The current situation is this: There is a very large and heavy rocket coming your way on an unpredictable descent path, and not just in free fall, but pushed by the thrust of a high-impulse, high-velocity, solid-fuel rocket engine.
This is LDRS, the country’s—and probably the world’s—largest annual gathering of high-power amateur rocket enthusiasts. From all over the world, eager rocketeers come for a long weekend’s worth of home-brewed acceleration and conversations about rocketry.
LDRS is an acronym for Large Dangerous Rocket Ships. It’s the place where the people who started out as boys and girls experimenting with Estes and Centuri model rockets go when they want to build really, really big rockets of their own.
LDRS is sponsored by a group called Tripoli, which is the largest organization of high-power rocket makers. There are scores of local chapters or “prefects” in locations across the world. This year, Tripoli has chosen the Panhandle of Texas Rocketry Prefect to host the big event. The local leadership has been busy for months turning a large patch of cow pasture into the nation’s most active rocket launching area.
Rocketeers both need and love wide-open spaces—the wider the better. Amateur rocket builders, especially those who specialize in building the largest and most powerful rockets, want only a couple of things: a lot of flat, open, unpopulated land in which to recover their rockets after flight, and clear, sunny skies. This makes places such as Texas, Kansas, and the Canadian prairie provinces ideal spots for LDRS gatherings.
The launch site is south of Amarillo, straight down the Interstate to the tiny hamlet of Happy, Texas. At that point, the route to LDRS follows Texas Ranch Road 287 east, a long, straight, and uncrowded chunk of pavement that goes through territory so flat you can practically see the curvature of the earth.
At the end of the long drive is the LDRS launch site, a sprawling temporary compound of tents, launch pads, electronics, and people. The level, open venue is perfect for facilitating the retrieval of the hundreds of rockets that will eventually drift back to earth during the event, attached by elastic shock cords to large white parachutes. This particular site has the additional and highly valued quality of being well outside all commercial air lanes, so the airspace above it has no scheduled flights. Even so, the Tripoli organizers had to apply for a certificate of special clearance from the Federal Aviation Administration, allowing very-high-altitude rocket flights during the three days of the event.
Central Texas can be brutally hot and bright in July, and the tents and E-Z Ups set up by the rocketeers and vendors provide the only shade. This meet has the air of a large crafts fair, except that the vendor booths contain recovery chutes, rocket engine casings, altimeters, and launch towers instead of decorated ceramic pots and fabric wall hangings. The east side of the area is dominated by rows and rows of missile launching pads.
In this heat, people are not inclined to exert themselves if they can help it, so most simply wander around the dusty field, working on their projects, talking to one another, and pointing. Spectators at a large-scale high-power rocket launch do a lot of pointing—always toward the sky, arms extended at about 70 degrees to the horizon. Their fingers trace out the rocket’s acceleration skyward and then fall back down to their sides as they watch it float down on the end of a parachute or two.
Temperature notwithstanding, for a few days the formerly sleepy area becomes an energetic beehive of activity: smoke plumes and contrails constantly hanging like puffy ropes over the ranch, rockets roaring up, then silently floating down.
The great number of participants keeps several launching pads active. The pads with the biggest rockets are placed the farthest away from people, for it is not unusual for a rocket to blow up, or in rocket lingo, “CATO,” on the pad, producing a shrapnel rainstorm.
On the afternoon of the second day, a really big rocket, two and a half stories tall, stands erect on the far launch pad. It is a gracefully proportioned and aerodynamically shaped rocket and it is beautiful, at least to a high-power rocket enthusiast. Spectators and rocketeers alike press toward the safety fence to get into position for the best view.
This is the Athos II rocket, built by the Gates brothers of California. Athos II is a very large rocket with high-specific-impulse engines and will likely attain great heights. This launch is obviously going to involve significant velocity, complexity, and power. Athos’s launch has been anticipated for quite some time, so the crowd near the safety fence is thick. People reach for their binoculars and position their cameras on tripods. Over the facility’s loudspeaker, the launch control officer begins the countdown for one of the highlights of LDRS-21.
THE TECHNOLOGY OF HIGH-POWER AMATEUR ROCKETRY
In the typical solid-fuel rocket, the rocket maker builds a fiberglass shell that houses the motor, the recovery system, and whatever sensors, cameras, or other payload is placed within.* But the bulk of the rocket’s weight is contained in its powerful chemical engines. In and of themselves, rocket engines are marvelous things. Their most basic form goes back to first-millennium China, when crude black powder was stuffed into bamboo rockets and used to frighten the enemy’s horses. A simple rocket engine is straightforward and easy to understand. There is chemical propellant packed inside a metal casing. The chemicals inside the motor burn, and as they do so, hot, expanding gas is produced. This gas rushes out the back of the motor through a nozzle and, as described in Isaac Newton’s Third Law of Motion, the backward g...
Product details
- Publisher : Clarkson Potter; American First edition (January 3, 2006)
- Language : English
- Hardcover : 224 pages
- ISBN-10 : 1400050820
- ISBN-13 : 978-1400050826
- Item Weight : 12 ounces
- Dimensions : 5.75 x 0.75 x 8.5 inches
- Best Sellers Rank: #3,173,569 in Books (See Top 100 in Books)
- #719 in Scientific Experiments & Projects
- #860 in Machinery Engineering (Books)
- #2,097 in Social Aspects of Technology
- Customer Reviews:
Important information
To report an issue with this product or seller, click here.
About the author

In 2011, Popular Mechanics Magazine added five special editors to its masthead: William Gurstelle, Jay Leno, the Mythbusters' Adam Savage and Jaime Hyneman, and Instapundit's Glenn Reynolds. There's a reason Bill is there along side those luminaries: His views on risk taking, combined with his best selling books have put him in the spotlight.
Media Attention
Long features about Bill and his ideas have run in the New York Times, The Wall Street Journal, Popular Science, the London Daily Telegraph, National Public Radio, PBS, Radio Canada, and scores of other media outlets.
Best Selling Author
Now, because of his groundbreaking views and easy writing style, he's one of the most widely read science and technology authors in the world. His best sellers include Absinthe and Flamethrowers, Backyard Ballistics, Adventures from the Technology Underground, and The Practical Pyromaniac. More than a half million copies of his books have been sold, a truly amazing amount for a technology author.
National Magazine Columnist
In addition to his books, he writes frequently on culture and technology for national magazines including Popular Mechanics, Wired, the Atlantic, and Make. Online, he is a frequent contributor to BoingBoing, Makezine, and Wired.
Popular Speaker
Bill has given lectures to groups all over the world including North America, Europe, Asia, and Australia. Select clients and their comments are available through the navigation panel to the left.
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on Amazon-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
In a society that is frequently more and more out of touch with an enterprising spirit of scientific exploration this book makes it clear that all is not lost yet. (Who would have guessed that the Virginia Military Institute may be the foremost seat of siege warfare in the modern world?) It's best to sum this up as a celebration of ingenuity, curiosity and the limitless imagination of the human mind.
I agree that some of the topics in the book aren't for the youngest of the curious and scientific but the book certainly isn't aimed at a younger audience. This is more of an introduction to topics that may or may not have crossed the path of the casual reader, not the hardcore enthusiast. With handy links and references the truly curious will easily be able to follow up on what the book offers. The mildly entertained will simply "wow" their friends at the next neighborhood block picnic or office water cooler round up.
A great book by any practical measure.
This book was meant to inspire, and it'll likely do so with an intellectual whom has an interest and open mind.
The reason that I wanted to give it to my kids is because the book is written at the 'primer' level in regards to the topics is covers. The diagrams are great for the middle school level, and the writing is also 5th-9th grade or so. Most of the material in the book can be found on the web (in more depth), but the book is a nice way to bring a bunch of the topics together and relate them as components in the technology underground. Not to mention that, on the web, the more 'fringy' the website, the more likely it will be that there are links leading to places you don't want your kid going. On the other hand, I want my kids to be excited about science and technology, to feel like there is some fun stuff there, instead of just endless number crunching. This book would certainly generate the interest and 'how do I' questions that lead to true learning. I feel as if school in the US is getting increasingly watered down and topics that have some of the most interest to kids ( topics that are the "coolest") are strangled due to the focus on political correctness. Even science fairs seem to be super-carefully controlled to over-emphasize safety and stay 'in the box'.
There is a section on pulse jets squarely in the middle of the 'Camp Pump' section, so it may be hard to take a sharpie to the book and 'redact' the material I am less-then-thrilled-with and leave the pulse jets intact. I will probably try that and let my kids have a look at it afterwards.
The only reason why I did not give this 5 stars is because there are some technical errors. These errors(mostly names of things) are of little importance to actually understanding the science behind the projects. I have seen far worse errors in $200+ books, so definitely not a deal breaker.
So what's in this book? Stories of people who had their rockets explode upon takeoff, who lost their fingers building contraptions, and a gratuitous section on how a penis pump works. Wow. What a technology adventure.
Why was this book written? In hopes of having schleps part with their money. Don't.


