Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime
Try Prime
and start saving today with fast, free delivery
Amazon Prime includes:
Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.
Amazon Prime members enjoy:- Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
- Unlimited Free Two-Day Delivery
- Streaming of thousands of movies and TV shows with limited ads on Prime Video.
- A Kindle book to borrow for free each month - with no due dates
- Listen to over 2 million songs and hundreds of playlists
- Unlimited photo storage with anywhere access
Important: Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.
Buy new:
-5% $10.39$10.39
Ships from: Amazon.com Sold by: Amazon.com
Save with Used - Good
$9.35$9.35
Ships from: Amazon Sold by: Martistore
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Follow the author
OK
Excursions in Number Theory (Dover Books on Mathematics)
Purchase options and add-ons
The theory of numbers is an ancient and fascinating branch of mathematics that plays an important role in modern computer theory. It is also a popular topic among amateur mathematicians (who have made many contributions to the field) because of its accessibility: it does not require advanced knowledge of higher mathematics.
This delightful volume, by two well-known mathematicians, invited readers to join a challenging expedition into the mystery and magic of number theory. No special training is needed — just high school mathematics, a fondness for figures, and an inquisitive mind. Such a person will soon be absorbed and intrigued by the ideas and problems presented here.
Beginning with familiar notions, the authors skillfully yet painlessly transport the reader to higher realms of mathematics, developing the necessary concepts along the way, so that complex subjects can be more easily understood. Included are thorough discussions of prime numbers, number patterns, irrationals and iterations, and calculating prodigies, among other topics.
Much of the material presented is not to be found in other popular treatments of number theory. Moreover, there are many important proofs (presented with simple and elegant explanations) often lacking in similar volumes. In sum, Excursions in Number Theory offers a splendid compromise between highly technical treatments inaccessible to lay readers and popular books with too little substance. Its stimulating and challenging presentation of significant aspects of number theory may be read lightly for enjoyment or studied closely for an exhilarating mental challenge.
- ISBN-100486257789
- ISBN-13978-0486257785
- PublisherDover Publications
- Publication dateNovember 1, 1988
- LanguageEnglish
- Dimensions5.46 x 0.45 x 7.98 inches
- Print length192 pages
Frequently bought together

Customers who bought this item also bought
Product details
- Publisher : Dover Publications (November 1, 1988)
- Language : English
- Paperback : 192 pages
- ISBN-10 : 0486257789
- ISBN-13 : 978-0486257785
- Item Weight : 2.31 pounds
- Dimensions : 5.46 x 0.45 x 7.98 inches
- Best Sellers Rank: #1,166,560 in Books (See Top 100 in Books)
- #273 in Number Theory (Books)
- #2,533 in Mathematics (Books)
- #5,261 in Professional
- Customer Reviews:
About the author

Discover more of the author’s books, see similar authors, read author blogs and more
Customer reviews
Our goal is to make sure every review is trustworthy and useful. That's why we use both technology and human investigators to block fake reviews before customers ever see them. Learn more
We block Amazon accounts that violate our community guidelines. We also block sellers who buy reviews and take legal actions against parties who provide these reviews. Learn how to report
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
My own college professor, who made math interesting every lecture.
The audience for this book are laypeople and the examples and subject matter is very casual.
For those who enjoy popular math books I have a warning: with the current explosion of popular math books you will probably have seen most of this material.
Math people will not find anything in this book, but hey it is a nice easy read for the casual reader.
Using carefully selected examples, the authors present key topics with surprisingly clarity. Although congruences (arithmetic, not geometric), Diophantine equations, and continued fractions may be unfamiliar, the reader rather quickly appreciates the critical roles played by these concepts and tools. For example, congruences prove to be exceedingly helpful in solving a wide range a numeric problems and also reappear in later discussions on irrationals, iterations, and Diophantine equations.
The study of prime numbers is fundamental to number theory, but as yet we have no known formula to produce all primes. Even more disturbing, we have no procedures that are even guaranteed to produce only primes (i.e., not yield an unpredictable mix of primes and composite numbers). There is something fundamental about primes that we seem not to understand. The short chapter, Prime Numbers as Leftover Scrap, offers a fascinating perspective that I have not encountered elsewhere.
Other chapters are more playful, offering curios, puzzles, and oddities. Some examples appear to be little more than amusing numeric coincidences while other oddities prove to have theoretical significance. I am not an avid fan of mathematical puzzles, but I thoroughly enjoyed these diversionary chapters.
As a follow-up to Ogilvy and Anderson, I am now reading:
Number Theory and Its History by Oystein Ore (1948), available as a Dover reprint (1988), is now rather old, even pre-dating computer use in number theory research. The difficulty level is moderate. The historical background is interesting. (3 stars)
Elementary Theory of Numbers (1962) by William J. LeVeque offers detailed proofs underlying number theory and should appeal to readers that enjoy studying mathematics. Topics include congruences, powers of an integer modulo m, continued fractions, Gaussian integers, and Diophantine equations. The Dover reprint suffers from a small font size. (3.5 stars)
Yet another Dover reprint, Number Theory (1971) by George Andrews also targets more serious readers. Andrews uses an interesting combinatorial approach to number theory. Good font size and open page layouts. (4 stars)
This book was originally published in 1966 by the Oxford Press. Brit maths notation is just `off' enough if, as me, you are not `into' it proofs are spoilt until the uncommon words are deciphered.
Maybe you recall in Alice in Wonderland the poem `... little Bat / how I wonder where your at'.--- `Bat' was a math prof at Oxford whose lectures and proofs were unaccustomed. Its not the maths which is Batty here but the nomenclature, the notation and the abruptness.
Top reviews from other countries
L'autore resta un ottimo divulgatore.







