Amazon Vehicles Editors' Picks Amazon Fashion Learn more Discover it Songs of Summer Fire TV Stick Happy Belly Snacks Totes Summer-Event-Garden Amazon Cash Back Offer power_s3 power_s3 power_s3  Amazon Echo  Echo Dot  Amazon Tap  Echo Dot  Amazon Tap  Amazon Echo Introducing new colors All-New Kindle Oasis AutoRip in CDs & Vinyl Water Sports STEM
Customer Review

11 of 12 people found the following review helpful
5.0 out of 5 stars Great book about numbers, June 23, 2011
This review is from: The Number Mysteries: A Mathematical Odyssey through Everyday Life (MacSci) (Paperback)
I have previously read and reviewed Rob Eastaway's books Why Do Buses Come in Threes? and How Long Is a Piece of String? on The hidden mathematics of everyday life, but although I've been aware of Marcus Du Sautoy's books for some time, this is the first I've actually bought and read. While his approach is different from Rob's, Marcus also has a way of explaining mathematics such that it can appeal to the wider public. The book is divided into five chapters, the basic themes being prime numbers, geometric shapes, winning streaks, coded information and predicting the future.

Perhaps the most amusing subject in the first chapter is the life-cycle of cicadas, which are apparently 7, 13 or 17 years in duration, depending on the species. The author suggests this cycle using one of three prime numbers may be a way of discouraging predators, but as he`s a mathematician rather than a biologist, I won`t assume that although it sounds plausible.

Sometimes the author strays from the chapter heading but that's no problem. For example, the first chapter discusses Fibonacci numbers (and the inevitable example of breeding rabbits) as well as prime numbers. Another off-topic digression that I found interesting was the author's discussion of the early number systems developed by ancient civilizations.

The chapter on geometric shapes is another fascinating chapter, discussing the shapes of footballs, teabags, snowflakes, coastlines, viruses and abstract paintings among other things. Golf balls aren't featured here; they come later in the book. The chapter on winning streaks discusses a variety of games and puzzles including the 18th century Königsberg bridge puzzle. Rob Eastaway also covered this puzzle in one of his books; it seems to be regarded as a particularly significant example in the world of mathematics. Marcus tells us how Königsberg has changed including the bridges.

The chapter on coded information explains that some codes appear to be uncrackable because they use very large prime numbers as multipliers, but also discusses other codes. The designers of the German Enigma code thought it was uncrackable, but British mathematicians eventually proved them wrong. There are other codes that were never meant to be secret, including the Morse code invented in the nineteenth century. The author also discusses check digits, using the ISBN book cataloguing system as an example. The last chapter on predicting the future discusses pendulums, boomerangs and weather among other things.

This is a very entertaining book although it does get a little technical here and there. As such, anybody who is in the least bit intimidated by mathematics might be better to begin with one of Rob Eastaway's books. However, I like both authors in different ways and I may end up buying more books by both authors.
Help other customers find the most helpful reviews 
Was this review helpful to you? Yes No

[Add comment]
Post a comment
To insert a product link use the format: [[ASIN:ASIN product-title]] (What's this?)
Amazon will display this name with all your submissions, including reviews and discussion posts. (Learn more)
Name:
Badge:
This badge will be assigned to you and will appear along with your name.
There was an error. Please try again.
Please see the full guidelines here.

Official Comment

As a representative of this product you can post one Official Comment on this review. It will appear immediately below the review wherever it is displayed.   Learn more
The following name and badge will be shown with this comment:
 (edit name)
After clicking the Post button you will be asked to create your public name, which will be shown with all your contributions.

Is this your product?

If you are the author, artist, manufacturer or an official representative of this product, you can post an Official Comment on this review. It will appear immediately below the review wherever it is displayed.  Learn more
Otherwise, you can still post a regular comment on this review.

Is this your product?

If you are the author, artist, manufacturer or an official representative of this product, you can post an Official Comment on this review. It will appear immediately below the review wherever it is displayed.   Learn more
 
System timed out

We were unable to verify whether you represent the product. Please try again later, or retry now. Otherwise you can post a regular comment.

Since you previously posted an Official Comment, this comment will appear in the comment section below. You also have the option to edit your Official Comment.   Learn more
The maximum number of Official Comments have been posted. This comment will appear in the comment section below.   Learn more
Prompts for sign-in
  [Cancel]

Comments

Track comments by e-mail

Sort: Oldest first | Newest first
Showing 1-1 of 1 posts in this discussion
Initial post: Oct 15, 2011 5:06:37 AM PDT
Leonhard Euler's solution to the Königsberg bridge puzzle is important since it led to the study of topology, one of the core branches of mathematics (along with algebra and analysis).
‹ Previous 1 Next ›

Review Details

Item

Reviewer


Location: Leicester England

Top Reviewer Ranking: 198